Newer
Older
# High-Throughput RNA-seq model fit
- [Installation](#installation)
- [CRAN packages dependencies](#cran-packages-dependencies)
- [Docker](#docker)
- [HTRfit simulation workflow](#htrfit-simulation-workflow)
- [Getting started](#getting-started)
To install the latest version of HTRfit, run the following in your R console :
```
if (!requireNamespace("remotes", quietly = TRUE))
install.packages("remotes")
remotes::install_git("https://gitbio.ens-lyon.fr/aduvermy/HTRfit")
You also have the option to download a release directly from the [HTRfit release page](https://gitbio.ens-lyon.fr/aduvermy/HTRfit/-/releases). Once you've downloaded the release, simply untar the archive. After that, open your R console and execute the following command, where HTRfit-v1.0.0 should be replaced with the path to the untarred folder:
install.packages('/HTRfit-v1.0.0', repos = NULL, type='source')
```
When dependencies are met, installation should take a few minutes.
install.packages(c('car', 'parallel', 'data.table', 'ggplot2', 'gridExtra', 'glmmTMB',
'magrittr', 'MASS', 'plotROC', 'reshape2', 'rlang', 'stats', 'utils', 'BiocManager'))
## -- optional
BiocManager::install('DESeq2', update = FALSE)
## Docker
We have developed [Docker images](https://hub.docker.com/repository/docker/ruanad/htrfit/general) to simplify the package's utilization. For an optimal development and coding experience with the Docker container, we recommend using Visual Studio Code (VSCode) along with the DevContainer extension. This setup provides a convenient and isolated environment for development and testing.
1. Install VSCode
2. Install Docker on your system and on VSCode
3. Launch the HTRfit container directly from VSCode
4. Install the DevContainer extension for VSCode.
5. Launch a remote window connected to the running Docker container.
6. Enjoy HTRfit !
In the realm of RNAseq analysis, various key experimental parameters play a crucial role in influencing the statistical power to detect expression changes. Parameters such as sequencing depth, the number of replicates, and more have a significant impact. To navigate the selection of optimal values for these experimental parameters, we introduce a comprehensive statistical framework known as **HTRfit**, underpinned by computational simulation. Moreover, **HTRfit** offers seamless compatibility with DESeq2 outputs, facilitating a comprehensive evaluation of RNAseq analysis.
<img src="./vignettes/figs/htrfit_workflow.png" width="500" height="300">
## -- init a design
input_var_list <- init_variable( name = "varA", mu = 0, sd = 0.29, level = 60) %>%
init_variable( name = "varB", mu = 0.27, sd = 0.6, level = 2) %>%
add_interaction( between_var = c("varA", "varB"), mu = 0.44, sd = 0.89)
## -- simulate RNAseq data
mock_data <- mock_rnaseq(input_var_list,
n_genes = 30,
min_replicates = 10,
max_replicates = 10,
basal_expression = 5 )
## -- prepare data & fit a model with mixed effect
data2fit = prepareData2fit(countMatrix = mock_data$counts,
metadata = mock_data$metadata,
normalization = F)
l_tmb <- fitModelParallel(formula = kij ~ varB + (varB | varA),
data = data2fit,
group_by = "geneID",
family = glmmTMB::nbinom2(link = "log"),
log_file = "log.txt",
n.cores = 1)
## -- evaluation
resSimu <- simulationReport(mock_data,
list_tmb = l_tmb,
coeff_threshold = 0.27,
alt_hypothesis = "greater")