Skip to content
Snippets Groups Projects
README.md 4.44 KiB
Newer Older
Arnaud Duvermy's avatar
Arnaud Duvermy committed
# High-Throughput RNA-seq model fit

- [Installation](#installation)
- [CRAN packages dependencies](#cran-packages-dependencies)
- [Docker](#docker)
- [HTRfit simulation workflow](#htrfit-simulation-workflow)
- [Getting started](#getting-started)

Arnaud Duvermy's avatar
Arnaud Duvermy committed

## Installation

Arnaud Duvermy's avatar
Arnaud Duvermy committed
* method A:  

Arnaud Duvermy's avatar
Arnaud Duvermy committed
To install the latest version of HTRfit, run the following in your R console :
```
if (!requireNamespace("remotes", quietly = TRUE))
    install.packages("remotes")
Arnaud Duvermy's avatar
Arnaud Duvermy committed
remotes::install_git("https://gitbio.ens-lyon.fr/aduvermy/HTRfit")
Arnaud Duvermy's avatar
Arnaud Duvermy committed
```

Arnaud Duvermy's avatar
Arnaud Duvermy committed
* method B:

Arnaud Duvermy's avatar
Arnaud Duvermy committed
You also have the option to download a release directly from the [HTRfit release page](https://gitbio.ens-lyon.fr/aduvermy/HTRfit/-/releases). Once you've downloaded the release, simply untar the archive. After that, open your R console and execute the following command, where HTRfit-v1.0.0 should be replaced with the path to the untarred folder:
Arnaud Duvermy's avatar
Arnaud Duvermy committed

```
Arnaud Duvermy's avatar
Arnaud Duvermy committed
## -- Example using the HTRfit-v1.0.0 release
Arnaud Duvermy's avatar
Arnaud Duvermy committed
install.packages('/HTRfit-v1.0.0', repos = NULL, type='source')
Arnaud Duvermy's avatar
Arnaud Duvermy committed

Arnaud Duvermy's avatar
Arnaud Duvermy committed
```

When dependencies are met, installation should take a few minutes.
Arnaud Duvermy's avatar
Arnaud Duvermy committed


## CRAN packages dependencies

Arnaud Duvermy's avatar
Arnaud Duvermy committed
The following depandencies are required:
Arnaud Duvermy's avatar
Arnaud Duvermy committed

Arnaud Duvermy's avatar
Arnaud Duvermy committed
```
Arnaud Duvermy's avatar
Arnaud Duvermy committed
## -- required
Arnaud Duvermy's avatar
Arnaud Duvermy committed
install.packages(c('car', 'parallel', 'data.table', 'ggplot2', 'gridExtra', 'glmmTMB',
 'magrittr', 'MASS', 'plotROC', 'reshape2', 'rlang', 'stats', 'utils', 'BiocManager'))
Arnaud Duvermy's avatar
Arnaud Duvermy committed
BiocManager::install('S4Vectors', update = FALSE)
## -- optional 
BiocManager::install('DESeq2', update = FALSE)
Arnaud Duvermy's avatar
Arnaud Duvermy committed
```

Arnaud Duvermy's avatar
Arnaud Duvermy committed
## Docker

We have developed [Docker images](https://hub.docker.com/repository/docker/ruanad/htrfit/general) to simplify the package's utilization. For an optimal development and coding experience with the Docker container, we recommend using Visual Studio Code (VSCode) along with the DevContainer extension. This setup provides a convenient and isolated environment for development and testing.

1. Install VSCode
2. Install Docker on your system and on VSCode
3. Launch the HTRfit container directly from VSCode
4. Install the DevContainer extension for VSCode.
5. Launch a remote window connected to the running Docker container.
6. Enjoy HTRfit !

Arnaud Duvermy's avatar
Arnaud Duvermy committed

Arnaud Duvermy's avatar
Arnaud Duvermy committed
## HTRfit simulation workflow
Arnaud Duvermy's avatar
Arnaud Duvermy committed

Arnaud Duvermy's avatar
Arnaud Duvermy committed
<div id="bg"  align="center">
Arnaud Duvermy's avatar
Arnaud Duvermy committed
  <img src="./vignettes/figs/htrfit_workflow.png" width="500" height="300">
Arnaud Duvermy's avatar
Arnaud Duvermy committed
</div> 
Arnaud Duvermy's avatar
Arnaud Duvermy committed


Arnaud Duvermy's avatar
Arnaud Duvermy committed
In this modeling framework, counts denoted as $`K_{ij}`$ for gene i and sample j are generated using a negative binomial distribution. The negative binomial distribution considers a fitted mean $`\mu_{ij}`$ and a gene-specific dispersion parameter $`\alpha_i`$.
Arnaud Duvermy's avatar
Arnaud Duvermy committed

The fitted mean $\mu_{ij}$ is determined by a parameter, qij, which is proportionally related to the sum of all effects specified using `init_variable()` or `add_interaction()`. If basal gene expressions are provided, the $\mu_{ij}$ values are scaled accordingly using the gene-specific basal expression value ($bexpr_i$).

Furthermore, the coefficients $\beta_i$ represent the natural logarithm fold changes for gene i across each column of the model matrix X. The dispersion parameter $\alpha_i$ plays a crucial role in defining the relationship between the variance of observed counts and their mean value. In simpler terms, it quantifies how far we expect observed counts to deviate from the mean value.



## Getting started
Arnaud Duvermy's avatar
Arnaud Duvermy committed

```
Arnaud Duvermy's avatar
Arnaud Duvermy committed
library('HTRfit')
Arnaud Duvermy's avatar
Arnaud Duvermy committed
## -- init a design 
input_var_list <- init_variable( name = "varA", mu = 0, sd = 0.29, level = 60) %>%
                  init_variable( name = "varB", mu = 0.27, sd = 0.6, level = 2) %>%
                    add_interaction( between_var = c("varA", "varB"), mu = 0.44, sd = 0.89)
## -- simulate RNAseq data 
mock_data <- mock_rnaseq(input_var_list, 
                         n_genes = 30,
                         min_replicates  = 10,
                         max_replicates = 10, 
                         basal_expression = 5 )
## -- prepare data & fit a model with mixed effect
data2fit = prepareData2fit(countMatrix = mock_data$counts, 
                           metadata =  mock_data$metadata, 
                           normalization = F)
l_tmb <- fitModelParallel(formula = kij ~ varB + (varB | varA),
                          data = data2fit, 
                          group_by = "geneID",
                          family = glmmTMB::nbinom2(link = "log"), 
                          log_file = "log.txt",
                          n.cores = 1)
## -- evaluation
resSimu <- simulationReport(mock_data, 
                            list_tmb = l_tmb,
                            coeff_threshold = 0.27, 
                            alt_hypothesis = "greater")

Arnaud Duvermy's avatar
Arnaud Duvermy committed
```