Skip to content
Snippets Groups Projects
Verified Commit c8cecec1 authored by Laurent Modolo's avatar Laurent Modolo
Browse files

M1_biosciences_dimension_reduction: update

parent 0405fcc8
Branches
No related tags found
No related merge requests found
......@@ -397,7 +397,7 @@ $$
$$
\item The correlation coefficient is a distance measure between variables:
$$
\operatorname{r}(\xbf^{j'},\xbf^{j}) = \frac{1}{2} \times \left( 1 - \frac{1}{n}\|\widetilde{\xbf}^j_c-\widetilde{\xbf}_c^{j'}\|^2 \right)
\operatorname{r}(\xbf^{j'},\xbf^{j}) = 1 - \frac{1}{2} \times \frac{1}{n}\|\widetilde{\xbf}^j_c-\widetilde{\xbf}_c^{j'}\|^2
$$
\end{itemize}
\end{frame}
......
......@@ -95,10 +95,10 @@ $\rightarrow$ Low-rank representation of $\mb X$
\begin{columns}[c]
\begin{column}{.5\textwidth}
\begin{itemize}
\item In many situations only the distance $d_{ij}$ between individuals is available
\item In many situations only the distance $d_{ii'}$ between individuals $(i,i')$ is available
\item The objective of MDS is to find new coordinates $\ubf_1,\hdots,\ubf_n$ that minimize:
$$
\sum_{ij} \Big( d_{ij} - \|\ubf_i-\ubf_j \|^2 \Big)^2
\sum_{i,i'} \Big( d_{ii'} - \|\ubf_i-\ubf_{i'} \|^2 \Big)^2
$$
\item The information regarding the variables is not considered (not available)
\end{itemize}
......@@ -120,7 +120,7 @@ $\rightarrow$ Low-rank representation of $\mb X$
\item These distances depend on a dot product
\item This dot product can be generalized by the so-called kernel
$$
K(\xbf_i,\xbf_j) =\langle \phi(\xbf_i), \phi(\xbf_j)\rangle
K(\xbf_i,\xbf_{i'}) =\langle \phi(\xbf_i), \phi(\xbf_{i'})\rangle
$$
\item $\phi$ is called the feature map and is unknown
\item Grounds most non linear methods (kernel-PCA, kernel MDS, etc)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment