From c8cecec1bb0b491c21d140d5253f7abd0dc5db15 Mon Sep 17 00:00:00 2001 From: Laurent Modolo <laurent.modolo@ens-lyon.fr> Date: Thu, 19 Oct 2023 15:03:29 +0200 Subject: [PATCH] M1_biosciences_dimension_reduction: update --- M1_biosciences_dimension_reduction/PCA.tex | 2 +- M1_biosciences_dimension_reduction/perspectives.tex | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/M1_biosciences_dimension_reduction/PCA.tex b/M1_biosciences_dimension_reduction/PCA.tex index f442fb3..14db8ac 100644 --- a/M1_biosciences_dimension_reduction/PCA.tex +++ b/M1_biosciences_dimension_reduction/PCA.tex @@ -397,7 +397,7 @@ $$ $$ \item The correlation coefficient is a distance measure between variables: $$ - \operatorname{r}(\xbf^{j'},\xbf^{j}) = \frac{1}{2} \times \left( 1 - \frac{1}{n}\|\widetilde{\xbf}^j_c-\widetilde{\xbf}_c^{j'}\|^2 \right) + \operatorname{r}(\xbf^{j'},\xbf^{j}) = 1 - \frac{1}{2} \times \frac{1}{n}\|\widetilde{\xbf}^j_c-\widetilde{\xbf}_c^{j'}\|^2 $$ \end{itemize} \end{frame} diff --git a/M1_biosciences_dimension_reduction/perspectives.tex b/M1_biosciences_dimension_reduction/perspectives.tex index 8c8df9e..848e7c2 100644 --- a/M1_biosciences_dimension_reduction/perspectives.tex +++ b/M1_biosciences_dimension_reduction/perspectives.tex @@ -95,10 +95,10 @@ $\rightarrow$ Low-rank representation of $\mb X$ \begin{columns}[c] \begin{column}{.5\textwidth} \begin{itemize} - \item In many situations only the distance $d_{ij}$ between individuals is available + \item In many situations only the distance $d_{ii'}$ between individuals $(i,i')$ is available \item The objective of MDS is to find new coordinates $\ubf_1,\hdots,\ubf_n$ that minimize: $$ - \sum_{ij} \Big( d_{ij} - \|\ubf_i-\ubf_j \|^2 \Big)^2 + \sum_{i,i'} \Big( d_{ii'} - \|\ubf_i-\ubf_{i'} \|^2 \Big)^2 $$ \item The information regarding the variables is not considered (not available) \end{itemize} @@ -120,7 +120,7 @@ $\rightarrow$ Low-rank representation of $\mb X$ \item These distances depend on a dot product \item This dot product can be generalized by the so-called kernel $$ - K(\xbf_i,\xbf_j) =\langle \phi(\xbf_i), \phi(\xbf_j)\rangle + K(\xbf_i,\xbf_{i'}) =\langle \phi(\xbf_i), \phi(\xbf_{i'})\rangle $$ \item $\phi$ is called the feature map and is unknown \item Grounds most non linear methods (kernel-PCA, kernel MDS, etc) -- GitLab