Skip to content
Snippets Groups Projects
Commit 5a59273d authored by nfontrod's avatar nfontrod
Browse files

man/*.Rd: update doc

parent 04aca343
Branches
Tags
No related merge requests found
...@@ -5,28 +5,34 @@ ...@@ -5,28 +5,34 @@
\title{Build matrices} \title{Build matrices}
\usage{ \usage{
build_count_matrices( build_count_matrices(
design, design_table,
path, path,
formula, my_formula,
filter_file, filter_list,
min_expression, min_expression,
output_folder output_folder
) )
} }
\arguments{ \arguments{
\item{design}{A design file with the column count_files, sample and condition} \item{design_table}{A dataframe with the column count_files, sample and
condition. Other columns corresponding to cofactors can be present}
\item{path}{The path were the count file are stored} \item{path}{The path were the count file are stored}
\item{formula}{The formula to use in DESeq2} \item{my_formula}{The formula to use in DESeq2}
\item{filter_file}{A file containing genes} \item{filter_list}{A vector containing the list of genes to keep in the
analysis. To keep all gene use a NULL object}
\item{min_expression}{The minimum average required expression across \item{min_expression}{The minimum average required expression across
all samples to keep the gene} all samples to keep the gene}
\item{output_folder}{Folder were the matrices will be produced} \item{output_folder}{Folder were the matrices will be produced}
} }
\value{
The dds object corresponding to a DESeqDatase object obtained after
running the DESeq function.
}
\description{ \description{
Build matrices Build matrices
} }
...@@ -16,6 +16,6 @@ perform a complete DESeq2 analysis including: ...@@ -16,6 +16,6 @@ perform a complete DESeq2 analysis including:
\item Sample loading \item Sample loading
\item Normalisation \item Normalisation
\item Figure creation \item Figure creation
\item Differential expression analysis for the hcosen contrasts \item Differential expression analysis for the chosen contrasts
} }
} }
...@@ -23,8 +23,17 @@ de_analysis(dds, my_contrast, output_folder, basemean_threshold, lfc_threshold) ...@@ -23,8 +23,17 @@ de_analysis(dds, my_contrast, output_folder, basemean_threshold, lfc_threshold)
\item{basemean_threshold:}{The minimum basemean of gene to be knameept} \item{basemean_threshold:}{The minimum basemean of gene to be knameept}
} }
\value{ \value{
A dataframe indicating The number of differentially expressed genes A list containing:
and the number of up and down regulated genes \enumerate{
\item at \code{data} key: A dataframe indicating The number of differentially
expressed genes and the number of up and down regulated genes
\item at \code{dds} key: The dds object corresponding to a DESeqDatase object
obtained after running the DESeq function.
\item at \code{results} key: A dataframe containing the results of DEseQ2 analysis
but for all gene
\item at \code{de_results} key: A dataframe containing only differentially expressed
genes
}
} }
\description{ \description{
Perform a DESeq2 analysis with a given contrast Perform a DESeq2 analysis with a given contrast
......
...@@ -13,14 +13,31 @@ de_analyzes( ...@@ -13,14 +13,31 @@ de_analyzes(
) )
} }
\arguments{ \arguments{
\item{dds}{The dds object corresponding to a DESeqDatase object obtained
after running the DESeq function.}
\item{my_contrasts}{A list containing contrast vectors}
\item{output_folder}{Folder where the result table will be created} \item{output_folder}{Folder where the result table will be created}
\item{lfc_threshold}{The minimum fold change to consider a gene significant} \item{lfc_threshold}{The minimum fold change to consider a gene significant}
\item{my_contrast}{A list containing contrast vectors}
\item{basemean_threshold:}{The minimum basemean of genes to be kept} \item{basemean_threshold:}{The minimum basemean of genes to be kept}
} }
\value{
A list containing for each comparison given in my_contrasts
(keys of the list) a sublist containing:
\enumerate{
\item at \code{data} key: A dataframe indicating The number of differentially
expressed genes and the number of up and down regulated genes
\item at \code{dds} key: The dds object corresponding to a DESeqDataSet object
obtained after running the DESeq function.
\item at \code{results} key: A dataframe containing the results of DEseQ2 analysis
but for all gene
\item at \code{de_results} key: A dataframe containing only differentially expressed
genes
}
}
\description{ \description{
Perform multiple differential expression analysis Perform multiple differential expression analysis
} }
...@@ -4,19 +4,20 @@ ...@@ -4,19 +4,20 @@
\alias{filter_dds} \alias{filter_dds}
\title{Filter DESeq2 object on expressed gene if needed} \title{Filter DESeq2 object on expressed gene if needed}
\usage{ \usage{
filter_dds(dds, filter_file, min_expression, addition_col, formula) filter_dds(dds, filter_list, min_expression, addition_col, my_formula)
} }
\arguments{ \arguments{
\item{dds}{A dds object} \item{dds}{A dds object}
\item{filter_file}{A file containing genes} \item{filter_list}{A vector containing the list of genes to keep in the
analysis. To keep all gene use a NULL object}
\item{min_expression}{The minimum average required expression across all \item{min_expression}{The minimum average required expression across all
samples to keep the gene} samples to keep the gene}
\item{addition_col}{Additional design columns} \item{addition_col}{Additional design columns}
\item{formula}{The formula to use in DESeq2} \item{my_formula}{The formula to use in DESeq2}
} }
\value{ \value{
A DESeqDataset object filtered A DESeqDataset object filtered
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/differiential_expression.R
\name{hline}
\alias{hline}
\title{Function to draw a plotly horizontal line}
\usage{
hline(y = 0, color = "black")
}
\arguments{
\item{y}{Location of horizontal line}
\item{color}{Color of horizontal line}
}
\value{
a list containing plotly parameters
}
\description{
Function to draw a plotly horizontal line
}
...@@ -4,14 +4,15 @@ ...@@ -4,14 +4,15 @@
\alias{load_matrix} \alias{load_matrix}
\title{Build the deseq2 count matrix from design file} \title{Build the deseq2 count matrix from design file}
\usage{ \usage{
load_matrix(design, path, formula) load_matrix(design_table, path, my_formula)
} }
\arguments{ \arguments{
\item{design}{A design file with the column count_files, sample and condition} \item{design_table}{A dataframe with the column count_files, sample and
condition. Other columns corresponding to cofactors can be present}
\item{path}{The path were the count file are stored} \item{path}{The path were the count file are stored}
\item{formula}{The formula to use in DESeq2} \item{my_formula}{The formula to use in DESeq2}
} }
\value{ \value{
A DESeqDataset object filtered A DESeqDataset object filtered
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\name{make_html_pca}
\alias{make_html_pca}
\title{Create plotly PCA plot}
\usage{
make_html_pca(pca_data, percent_var, output_folder, columns)
}
\arguments{
\item{pca_data}{Object returned by DESeq2::plotPCA containing PCA table}
\item{percent_var}{Vector containing the percentage of variance
of PC1 and PC2}
\item{output_folder}{Folder where the figure will be created}
\item{columns}{The design columns}
}
\description{
Create plotly PCA plot
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\name{make_pca}
\alias{make_pca}
\title{Make ggplot PCA}
\usage{
make_pca(pca_data, percent_var, columns, dds)
}
\arguments{
\item{pca_data}{Object returned by DESeq2::plotPCA containing PCA table}
\item{percent_var}{Vector containing the percentage of variance
of PC1 and PC2}
\item{columns}{A vector containing the columns to display in PCA data}
\item{dds}{a DESeqDataSet object}
}
\description{
Make ggplot PCA
}
...@@ -5,36 +5,55 @@ ...@@ -5,36 +5,55 @@
\title{DESeq2 wrapper} \title{DESeq2 wrapper}
\usage{ \usage{
run_deseq2( run_deseq2(
design, design_table,
path, path,
formula,
filter_file,
min_expression,
output_folder,
my_contrasts, my_contrasts,
basemean_threshold, my_formula = "~ condition",
lfc_threshold filter_list = NULL,
min_expression = 2,
output_folder = ".",
basemean_threshold = 0,
lfc_threshold = 0
) )
} }
\arguments{ \arguments{
\item{design}{A design file with the column count_files, sample and condition} \item{design_table}{A dataframe with the column count_files, sample and
condition. Other columns corresponding to cofactors can be present}
\item{path}{The path were the count file are stored} \item{path}{The path were the count file are stored}
\item{formula}{The formula to use in DESeq2} \item{my_formula}{The formula to use in DESeq2 (default '~ condition')}
\item{filter_file}{A file containing genes} \item{filter_list}{A vector containing the list of genes to keep in the
analysis. To keep all gene use a NULL object, (default NULL)}
\item{min_expression}{The minimum average required expression across \item{min_expression}{The minimum average required expression across
all samples to keep the gene} all samples to keep the gene (default 2)}
\item{output_folder}{Folder were the matrices will be produced} \item{output_folder}{Folder were the matrices will be produced (default .)}
\item{lfc_threshold}{The minimum fold change to consider a gene significant} \item{lfc_threshold}{The minimum fold change to consider a gene significant
(default 0)}
\item{my_contrast}{A list containing contrast vectors} \item{my_contrast}{A list containing contrast vectors: you can use
list(c('condition', 'TEST', 'CTRL') to build it)}
\item{basemean_threshold:}{The minimum basemean of genes to be kept} \item{basemean_threshold:}{The minimum basemean of genes to be kept
(default 0)}
}
\value{
A list containing for each comparison given in my_contrasts
(keys of the list) a sublist containing:
\enumerate{
\item at \code{data} key: A dataframe indicating The number of differentially
expressed genes and the number of up and down regulated genes
\item at \code{dds} key: The dds object corresponding to a DESeqDatase object
obtained after running the DESeq function.
\item at \code{results} key: A dataframe containing the results of DEseQ2 analysis
but for all gene
\item at \code{de_results} key: A dataframe containing only differentially expressed
genes
}
} }
\description{ \description{
DESeq2 wrapper DESeq2 wrapper
...@@ -45,6 +64,6 @@ perform a complete DESeq2 analysis including: ...@@ -45,6 +64,6 @@ perform a complete DESeq2 analysis including:
\item Sample loading \item Sample loading
\item Normalisation \item Normalisation
\item Figure creation \item Figure creation
\item Differential expression analysis for the hcosen contrasts \item Differential expression analysis for the chosen contrasts
} }
} }
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/differiential_expression.R
\name{vline}
\alias{vline}
\title{Function to draw a plotly horizontal line}
\usage{
vline(x = 0, color = "black")
}
\arguments{
\item{x}{Location of vertical line}
\item{color}{Color of vertical line}
}
\value{
a list containing plotly parameters
}
\description{
Function to draw a plotly horizontal line
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment