Skip to content
Snippets Groups Projects
Commit 5a59273d authored by nfontrod's avatar nfontrod
Browse files

man/*.Rd: update doc

parent 04aca343
Branches
Tags
No related merge requests found
......@@ -5,28 +5,34 @@
\title{Build matrices}
\usage{
build_count_matrices(
design,
design_table,
path,
formula,
filter_file,
my_formula,
filter_list,
min_expression,
output_folder
)
}
\arguments{
\item{design}{A design file with the column count_files, sample and condition}
\item{design_table}{A dataframe with the column count_files, sample and
condition. Other columns corresponding to cofactors can be present}
\item{path}{The path were the count file are stored}
\item{formula}{The formula to use in DESeq2}
\item{my_formula}{The formula to use in DESeq2}
\item{filter_file}{A file containing genes}
\item{filter_list}{A vector containing the list of genes to keep in the
analysis. To keep all gene use a NULL object}
\item{min_expression}{The minimum average required expression across
all samples to keep the gene}
\item{output_folder}{Folder were the matrices will be produced}
}
\value{
The dds object corresponding to a DESeqDatase object obtained after
running the DESeq function.
}
\description{
Build matrices
}
......@@ -16,6 +16,6 @@ perform a complete DESeq2 analysis including:
\item Sample loading
\item Normalisation
\item Figure creation
\item Differential expression analysis for the hcosen contrasts
\item Differential expression analysis for the chosen contrasts
}
}
......@@ -23,8 +23,17 @@ de_analysis(dds, my_contrast, output_folder, basemean_threshold, lfc_threshold)
\item{basemean_threshold:}{The minimum basemean of gene to be knameept}
}
\value{
A dataframe indicating The number of differentially expressed genes
and the number of up and down regulated genes
A list containing:
\enumerate{
\item at \code{data} key: A dataframe indicating The number of differentially
expressed genes and the number of up and down regulated genes
\item at \code{dds} key: The dds object corresponding to a DESeqDatase object
obtained after running the DESeq function.
\item at \code{results} key: A dataframe containing the results of DEseQ2 analysis
but for all gene
\item at \code{de_results} key: A dataframe containing only differentially expressed
genes
}
}
\description{
Perform a DESeq2 analysis with a given contrast
......
......@@ -13,14 +13,31 @@ de_analyzes(
)
}
\arguments{
\item{dds}{The dds object corresponding to a DESeqDatase object obtained
after running the DESeq function.}
\item{my_contrasts}{A list containing contrast vectors}
\item{output_folder}{Folder where the result table will be created}
\item{lfc_threshold}{The minimum fold change to consider a gene significant}
\item{my_contrast}{A list containing contrast vectors}
\item{basemean_threshold:}{The minimum basemean of genes to be kept}
}
\value{
A list containing for each comparison given in my_contrasts
(keys of the list) a sublist containing:
\enumerate{
\item at \code{data} key: A dataframe indicating The number of differentially
expressed genes and the number of up and down regulated genes
\item at \code{dds} key: The dds object corresponding to a DESeqDataSet object
obtained after running the DESeq function.
\item at \code{results} key: A dataframe containing the results of DEseQ2 analysis
but for all gene
\item at \code{de_results} key: A dataframe containing only differentially expressed
genes
}
}
\description{
Perform multiple differential expression analysis
}
......@@ -4,19 +4,20 @@
\alias{filter_dds}
\title{Filter DESeq2 object on expressed gene if needed}
\usage{
filter_dds(dds, filter_file, min_expression, addition_col, formula)
filter_dds(dds, filter_list, min_expression, addition_col, my_formula)
}
\arguments{
\item{dds}{A dds object}
\item{filter_file}{A file containing genes}
\item{filter_list}{A vector containing the list of genes to keep in the
analysis. To keep all gene use a NULL object}
\item{min_expression}{The minimum average required expression across all
samples to keep the gene}
\item{addition_col}{Additional design columns}
\item{formula}{The formula to use in DESeq2}
\item{my_formula}{The formula to use in DESeq2}
}
\value{
A DESeqDataset object filtered
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/differiential_expression.R
\name{hline}
\alias{hline}
\title{Function to draw a plotly horizontal line}
\usage{
hline(y = 0, color = "black")
}
\arguments{
\item{y}{Location of horizontal line}
\item{color}{Color of horizontal line}
}
\value{
a list containing plotly parameters
}
\description{
Function to draw a plotly horizontal line
}
......@@ -4,14 +4,15 @@
\alias{load_matrix}
\title{Build the deseq2 count matrix from design file}
\usage{
load_matrix(design, path, formula)
load_matrix(design_table, path, my_formula)
}
\arguments{
\item{design}{A design file with the column count_files, sample and condition}
\item{design_table}{A dataframe with the column count_files, sample and
condition. Other columns corresponding to cofactors can be present}
\item{path}{The path were the count file are stored}
\item{formula}{The formula to use in DESeq2}
\item{my_formula}{The formula to use in DESeq2}
}
\value{
A DESeqDataset object filtered
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\name{make_html_pca}
\alias{make_html_pca}
\title{Create plotly PCA plot}
\usage{
make_html_pca(pca_data, percent_var, output_folder, columns)
}
\arguments{
\item{pca_data}{Object returned by DESeq2::plotPCA containing PCA table}
\item{percent_var}{Vector containing the percentage of variance
of PC1 and PC2}
\item{output_folder}{Folder where the figure will be created}
\item{columns}{The design columns}
}
\description{
Create plotly PCA plot
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\name{make_pca}
\alias{make_pca}
\title{Make ggplot PCA}
\usage{
make_pca(pca_data, percent_var, columns, dds)
}
\arguments{
\item{pca_data}{Object returned by DESeq2::plotPCA containing PCA table}
\item{percent_var}{Vector containing the percentage of variance
of PC1 and PC2}
\item{columns}{A vector containing the columns to display in PCA data}
\item{dds}{a DESeqDataSet object}
}
\description{
Make ggplot PCA
}
......@@ -5,36 +5,55 @@
\title{DESeq2 wrapper}
\usage{
run_deseq2(
design,
design_table,
path,
formula,
filter_file,
min_expression,
output_folder,
my_contrasts,
basemean_threshold,
lfc_threshold
my_formula = "~ condition",
filter_list = NULL,
min_expression = 2,
output_folder = ".",
basemean_threshold = 0,
lfc_threshold = 0
)
}
\arguments{
\item{design}{A design file with the column count_files, sample and condition}
\item{design_table}{A dataframe with the column count_files, sample and
condition. Other columns corresponding to cofactors can be present}
\item{path}{The path were the count file are stored}
\item{formula}{The formula to use in DESeq2}
\item{my_formula}{The formula to use in DESeq2 (default '~ condition')}
\item{filter_file}{A file containing genes}
\item{filter_list}{A vector containing the list of genes to keep in the
analysis. To keep all gene use a NULL object, (default NULL)}
\item{min_expression}{The minimum average required expression across
all samples to keep the gene}
all samples to keep the gene (default 2)}
\item{output_folder}{Folder were the matrices will be produced}
\item{output_folder}{Folder were the matrices will be produced (default .)}
\item{lfc_threshold}{The minimum fold change to consider a gene significant}
\item{lfc_threshold}{The minimum fold change to consider a gene significant
(default 0)}
\item{my_contrast}{A list containing contrast vectors}
\item{my_contrast}{A list containing contrast vectors: you can use
list(c('condition', 'TEST', 'CTRL') to build it)}
\item{basemean_threshold:}{The minimum basemean of genes to be kept}
\item{basemean_threshold:}{The minimum basemean of genes to be kept
(default 0)}
}
\value{
A list containing for each comparison given in my_contrasts
(keys of the list) a sublist containing:
\enumerate{
\item at \code{data} key: A dataframe indicating The number of differentially
expressed genes and the number of up and down regulated genes
\item at \code{dds} key: The dds object corresponding to a DESeqDatase object
obtained after running the DESeq function.
\item at \code{results} key: A dataframe containing the results of DEseQ2 analysis
but for all gene
\item at \code{de_results} key: A dataframe containing only differentially expressed
genes
}
}
\description{
DESeq2 wrapper
......@@ -45,6 +64,6 @@ perform a complete DESeq2 analysis including:
\item Sample loading
\item Normalisation
\item Figure creation
\item Differential expression analysis for the hcosen contrasts
\item Differential expression analysis for the chosen contrasts
}
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/differiential_expression.R
\name{vline}
\alias{vline}
\title{Function to draw a plotly horizontal line}
\usage{
vline(x = 0, color = "black")
}
\arguments{
\item{x}{Location of vertical line}
\item{color}{Color of vertical line}
}
\value{
a list containing plotly parameters
}
\description{
Function to draw a plotly horizontal line
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment