Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
nuclei_quantification
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RDP
nuclei_quantification
Commits
5840e6ae
Commit
5840e6ae
authored
Feb 20, 2023
by
Alice Hugues
Browse files
Options
Downloads
Patches
Plain Diff
maj gradients
parent
82ca6e3c
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/gradients.R
+168
-66
168 additions, 66 deletions
src/gradients.R
src/gradients_fcts.R
+44
-7
44 additions, 7 deletions
src/gradients_fcts.R
with
212 additions
and
73 deletions
src/gradients.R
+
168
−
66
View file @
5840e6ae
source
(
'src/00_utils.R'
)
source
(
'src/00_base_functions.R'
)
source
(
'src/gradients_fcts.R'
)
rds.name
<-
'seuObj_wt_preprocessed_filtered'
output.dir
<-
'results/filtered/wt'
output.dir
<-
'results/filtered/230217_wt'
dir.create
(
output.dir
)
output.name
<-
'ryu2019'
# load data
...
...
@@ -18,21 +20,29 @@ seuObj[['id']] <- id
seuObj
[[
'background'
]]
<-
'wt'
# similarity score to final id
# select terminal ref
ref_ids
<-
c
(
'Atrichoblast'
,
'LRC'
)
hist
(
seuObj
@
meta.data
[,
3
])
ref_ids
<-
c
(
'Atrichoblast'
,
'Trichoblast'
)
ref.i1.cells
<-
seuObj
@
meta.data
%>%
filter
(
zone
==
'Mature'
&
id
==
ref_ids
[
1
])
%>%
filter
(
zone
==
'Mature'
&
id
==
ref_ids
[
1
]
&
nFeature_RNA
<
quantile
(
nFeature_RNA
,
0.1
)
)
%>%
rownames
()
length
(
ref.i1.cells
)
DimPlot
(
seuObj
,
reduction
=
"umap"
,
label
=
FALSE
,
cells.highlight
=
ref.i1.cells
)
png
(
sprintf
(
"%s/refcells_%s_%s.png"
,
output.dir
,
output.name
,
ref_ids
[
1
]),
width
=
130
,
height
=
130
,
res
=
300
,
units
=
'mm'
)
DimPlot
(
seuObj
,
reduction
=
"umap"
,
label
=
FALSE
,
cells.highlight
=
ref.i1.cells
)
+
theme_void
()
+
theme
(
legend.position
=
'none'
)
dev.off
()
ref.i2.cells
<-
seuObj
@
meta.data
%>%
filter
(
zone
==
'Mature'
&
id
==
ref_ids
[
2
])
%>%
filter
(
zone
==
'Mature'
&
id
==
ref_ids
[
2
]
&
nFeature_RNA
<
quantile
(
nFeature_RNA
,
0.1
)
)
%>%
rownames
()
length
(
ref.i2.cells
)
DimPlot
(
seuObj
,
reduction
=
"umap"
,
label
=
FALSE
,
cells.highlight
=
ref.i2.cells
)
png
(
sprintf
(
"%s/refcells_%s_%s.png"
,
output.dir
,
output.name
,
ref_ids
[
2
]),
width
=
130
,
height
=
130
,
res
=
300
,
units
=
'mm'
)
DimPlot
(
seuObj
,
reduction
=
"umap"
,
label
=
FALSE
,
cells.highlight
=
ref.i2.cells
)
+
theme_void
()
+
theme
(
legend.position
=
'none'
)
dev.off
()
# select sc data
filter.cells
<-
rownames
(
seuObj
@
meta.data
[
which
(
seuObj
@
meta.data
$
id
%in%
ref_ids
),
])
...
...
@@ -45,19 +55,46 @@ sc.mat <- GetAssayData(seuObj[,filter.cells], assay = Assay, slot = Slot)
features
<-
rownames
(
seuObj
)
features
<-
root_genes
# compute ref based on features
# create labels based on features
labels
<-
labeller
(
list
(
K4_genes
,
K27K4_genes
,
K27_genes
),
l_names
=
c
(
'K4-only'
,
'Bivalent'
,
'K27-only'
),
features
)
proportions
(
table
(
labels
))
glist
<-
setdiff
(
c
(
K27_genes
,
K27K4_genes
),
K27_wr
)
labels
<-
labeller
(
list
(
glist
),
l_names
=
c
(
'PcG_WOX5'
),
features
)
write.table
(
names
(
labels
[
which
(
labels
==
'PcG_WOX5'
)]),
file
=
sprintf
(
'%s/PcG_WOX5_root.txt'
,
output.dir
),
quote
=
FALSE
,
col.names
=
F
,
row.names
=
F
)
FeaturePlot
(
seuObj
,
features
=
names
(
labels
[
which
(
labels
==
'PcG_WOX5'
)][
10
]))
# they seem to be polarized
# //////////////////////////////////////////////////////////////////////////////
# Compute refs (average transcriptome) based on features
ref.i1
<-
rowMeans
(
sc.mat
[
features
,
ref.i1.cells
])
ref.i2
<-
rowMeans
(
sc.mat
[
features
,
ref.i2.cells
])
#
c
ompute similarity to the reference
#
C
ompute similarity to the reference
cor.ref
<-
proxyC
::
simil
(
x
=
t
(
sc.mat
[
features
,]),
y
=
rbind
(
ref.i1
,
ref.i2
),
method
=
'correlation'
)
saveRDS
(
cor.ref
,
file
=
sprintf
(
'%s/cor_%s.rds'
,
output.dir
,
paste0
(
ref_ids
,
collapse
=
'_'
)))
cor.ref
<-
readRDS
(
sprintf
(
'%s/cor_%s.rds'
,
output.dir
,
paste0
(
ref_ids
,
collapse
=
'_'
)))
# mixture model
tzs
<-
sapply
(
1
:
2
,
function
(
idx
){
cells
<-
rownames
(
seuObj
@
meta.data
[
which
(
seuObj
@
meta.data
$
id
==
ref_ids
[
idx
]),])
f
<-
factor
(
seuObj
@
meta.data
[
cells
,
]
$
zone
,
levels
=
c
(
'Meristem'
,
'Elongation'
,
'Mature'
))
find_tzs
(
cor
=
cor.ref
[,
idx
],
cells
=
cells
,
factor
=
f
,
id_name
=
ref_ids
[
idx
])
})
saveRDS
(
tzs
,
file
=
sprintf
(
'%s/tzs_%s.rds'
,
output.dir
,
paste0
(
ref_ids
,
collapse
=
'_'
)))
# Plot selected cells on the similarity space
factor
<-
seuObj
@
meta.data
[
filter.cells
,]
$
zone
cols
<-
brewer.pal
(
length
(
unique
(
factor
)),
"Set1"
)
names
(
cols
)
<-
unique
(
factor
)
cols
subset.cells
<-
rownames
(
seuObj
@
meta.data
[
which
(
seuObj
@
meta.data
$
id
%in%
c
(
'Atrichoblast'
)
&
seuObj
@
meta.data
$
background
==
'wt'
),
])
png
(
sprintf
(
"%s/gradient_%s_%s.png"
,
output.dir
,
output.name
,
paste0
(
ref_ids
,
collapse
=
'_'
)),
...
...
@@ -67,61 +104,98 @@ plot(cor.ref[filter.cells,1], cor.ref[filter.cells,2], pch = 19, cex = 0.2, col
points
(
cor.ref
[
subset.cells
,
1
],
cor.ref
[
subset.cells
,
2
],
pch
=
19
,
cex
=
0.4
,
col
=
'red'
)
dev.off
()
png
(
sprintf
(
"%s/gradient_zones_%s_%s.png"
,
output.dir
,
output.name
,
paste0
(
ref_ids
,
collapse
=
'_'
)),
png
(
sprintf
(
"%s/gradient_zones_%s_%s
_1
.png"
,
output.dir
,
output.name
,
paste0
(
ref_ids
,
collapse
=
'_'
)),
width
=
130
,
height
=
130
,
res
=
300
,
units
=
'mm'
)
plot
(
cor.ref
[
filter.cells
,
1
],
cor.ref
[
filter.cells
,
2
],
pch
=
19
,
cex
=
0.2
,
col
=
cols
[
factor
],
#scales::alpha(cols[factor], 1),
plot
(
cor.ref
[
filter.cells
,
1
],
cor.ref
[
filter.cells
,
2
],
pch
=
19
,
cex
=
0.2
,
col
=
make_pal
(
factor
)
[
factor
],
#scales::alpha(cols[factor], 1),
xlab
=
ref_ids
[
1
],
ylab
=
ref_ids
[
2
])
abline
(
v
=
tzs
[,
1
],
lty
=
'dashed'
)
dev.off
()
png
(
sprintf
(
"%s/gradient_zones_%s_%s_2.png"
,
output.dir
,
output.name
,
paste0
(
ref_ids
,
collapse
=
'_'
)),
width
=
130
,
height
=
130
,
res
=
300
,
units
=
'mm'
)
plot
(
cor.ref
[
filter.cells
,
1
],
cor.ref
[
filter.cells
,
2
],
pch
=
19
,
cex
=
0.2
,
col
=
make_pal
(
factor
)[
factor
],
#scales::alpha(cols[factor], 1),
xlab
=
ref_ids
[
1
],
ylab
=
ref_ids
[
2
])
abline
(
h
=
tzs
[,
2
],
lty
=
'dashed'
)
dev.off
()
# //////////////////////////////////////////////////////////////////////////////
# Gene expression changes along similarity axes
# selection of cells
# Selection of cells
i1_wt
<-
rownames
(
seuObj
@
meta.data
[
which
(
seuObj
@
meta.data
$
id
%in%
ref_ids
[
1
]
&
seuObj
@
meta.data
$
background
==
'wt'
),
])
DimPlot
(
seuObj
,
reduction
=
"umap"
,
label
=
FALSE
,
cells.highlight
=
i1_wt
)
i2_wt
<-
rownames
(
seuObj
@
meta.data
[
which
(
seuObj
@
meta.data
$
id
%in%
ref_ids
[
2
]
&
seuObj
@
meta.data
$
background
==
'wt'
),
])
DimPlot
(
seuObj
,
reduction
=
"umap"
,
label
=
FALSE
,
cells.highlight
=
i2_wt
)
#
c
ompute gradients
#
C
ompute gradients
step
<-
0.1
sd
<-
0.1
x
<-
seq
(
apply
(
cor.ref
,
2
,
min
)[
1
],
apply
(
cor.ref
,
2
,
max
)[
1
],
step
)
gr_i2_wt
<-
epidermis_gr
(
x
,
dx
=
step
,
sd
=
sd
,
scores.mat
=
cor.ref
,
sc.mat
[
features
,],
cells
=
i2_wt
,
cores
=
2
)
# both at the same time
gr_i1_wt
<-
epidermis_gr
(
x
,
dx
=
step
,
sd
=
sd
,
scores.mat
=
cor.ref
,
sc.mat
[
features
,],
cells
=
i1_wt
,
cores
=
2
)
# both at the same time
# plot gradients
gene_id
<-
'AT5G49270'
#'AT1G66470' #'AT1G27740'#'AT5G43175' #'AT4G33880' # RSL family
sd
<-
0.3
cores
<-
6
x
<-
seq
(
apply
(
cor.ref
,
2
,
quantile
,
0.03
)[
1
],
apply
(
cor.ref
,
2
,
quantile
,
0.97
)[
1
],
step
)
gr_i1_wt
<-
epidermis_gr
(
x
,
dx
=
step
,
sd
=
sd
,
scores.mat
=
cor.ref
,
sc.mat
[
features
,],
cells
=
i1_wt
,
cores
=
cores
)
gr_i2_wt
<-
epidermis_gr
(
x
,
dx
=
step
,
sd
=
sd
,
scores.mat
=
cor.ref
,
sc.mat
[
features
,],
cells
=
i2_wt
,
cores
=
cores
)
# plot gradients for a given feature
gene_id
<-
'AT4G33880'
#'AT1G66470' #'AT1G27740'#'AT5G43175' #'AT4G33880' # RSL family
pdf
(
file
=
sprintf
(
"%s/gr_%s_%s.pdf"
,
output.dir
,
gene_id
,
paste0
(
ref_ids
,
collapse
=
'_'
)))
FeaturePlot
(
seuObj
,
features
=
gene_id
,
split.by
=
'background'
)
plot
(
x
,
gr_i2_wt
[[
1
]][
gene_id
,],
xlab
=
'Identity score (i2blasts)'
,
ylab
=
'Expression gradient'
,
pch
=
15
,
main
=
gene_id
)
abline
(
h
=
0
)
plot
(
x
,
gr_i2_wt
[[
2
]][
gene_id
,],
xlab
=
'Identity score (i1blasts)'
,
ylab
=
'Expression gradient'
,
)
# i1blast score
plot
(
cor.ref
[
i1_wt
,
1
],
sc.mat
[
gene_id
,
i1_wt
])
plot
(
cor.ref
[
i2_wt
,
1
],
sc.mat
[
gene_id
,
i2_wt
])
plot_gr_feature
(
gr_mat
=
gr_i1_wt
,
ref_ids
,
feature
=
gene_id
)
plot_gr_feature
(
gr_mat
=
gr_i2_wt
,
ref_ids
,
feature
=
gene_id
)
dev.off
()
n_features
<-
500
top_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]],
n_features
,
which_genes
=
'top'
,
label
=
NULL
)
#
n_features
<-
250
top_i1
<-
plot_gr
(
gr_i1_wt
[[
1
]],
n_features
,
which_genes
=
'top'
,
label
=
NULL
)
top_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]],
n_features
,
which_genes
=
'top'
,
label
=
NULL
)
png
(
sprintf
(
"%s/heatmap_top_nolab_%s_%s.png"
,
output.dir
,
ref_ids
[
2
],
output.name
),
width
=
85
,
height
=
75
,
res
=
300
,
units
=
'mm'
)
top_i2
$
heatmap
dev.off
()
png
(
sprintf
(
"%s/heatmap_top_nolab_%s_%s.png"
,
output.dir
,
ref_ids
[
1
],
output.name
),
width
=
85
,
height
=
75
,
res
=
300
,
units
=
'mm'
)
top_i1
$
heatmap
dev.off
()
bottom_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]],
n_features
,
which_genes
=
'bottom'
,
label
=
NULL
)
bottom_i1
<-
plot_gr
(
gr_i1_wt
[[
1
]],
n_features
,
which_genes
=
'bottom'
,
label
=
NULL
)
bottom_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]],
n_features
,
which_genes
=
'bottom'
,
label
=
NULL
)
#
hclust.res
<-
hclust
(
dist
(
gr_i2_wt
[[
2
]][
top_i2
$
genes
,
]),
method
=
"complete"
)
cl
<-
cutree
(
hclust.res
,
k
=
3
)
tapply
(
top_i2
$
which.max
[
top_i2
$
genes
],
cl
,
summary
)
tzs.delta
<-
sapply
(
tzs
,
function
(
x
){
abs
(
top_i2
$
which.max
-
x
)
})
# find the closest to 0
apply
(
tzs.delta
,
2
,
function
(
y
){
head
(
sort
(
y
),
20
)
},
simplify
=
F
)
# gradient threshold based on full genome
# top-peaking genes
png
(
sprintf
(
"%s/gr_boxplot_top_%s.png"
,
output.dir
,
paste0
(
ref_ids
,
collapse
=
'_'
)),
png
(
sprintf
(
"%s/gr_boxplot_top_%s
_%s
.png"
,
output.dir
,
paste0
(
ref_ids
,
collapse
=
'_'
)
,
n_features
),
width
=
100
,
height
=
130
,
res
=
300
,
units
=
'mm'
)
boxplot
(
list
(
top_i1
$
max
,
top_i2
$
max
),
ylab
=
'Maximum gradient'
,
names
=
ref_ids
)
points
(
x
=
c
(
1
,
2
),
y
=
c
(
top_i1
$
threshold
,
top_i2
$
threshold
),
col
=
'red'
,
pch
=
19
)
boxplot
(
list
(
top_i1
$
max
,
top_i2
$
max
),
ylab
=
'Maximum gradient'
,
names
=
ref_ids
,
cex
=
0.5
)
points
(
x
=
c
(
1
,
2
),
y
=
c
(
top_i1
$
threshold
,
top_i2
$
threshold
),
col
=
'red'
,
pch
=
19
,
cex
=
2
)
#data.frame('max' = c(top_i1$max, top_i2$max),
# 'cell_type' = rep(ref_ids, each = length(top_i1$max))) %>%
# ggplot(aes(x = cell_type, y = max, fill = cell_type)) + geom_violin() + geom_boxplot()
dev.off
()
write.table
(
intersect
(
top_i1
$
genes
,
top_i2
$
genes
),
file
=
sprintf
(
'%s/gr_genes_top_common_%s_%s_%s.txt'
,
output.dir
,
ref_ids
[
1
],
ref_ids
[
2
],
length
(
top_i2
$
genes
)),
quote
=
FALSE
,
col.names
=
F
,
row.names
=
F
)
write.table
(
top_i2
$
genes
,
file
=
sprintf
(
'%s/gr_genes_top_%s_%s.txt'
,
output.dir
,
ref_ids
[
2
],
n_featur
es
),
file
=
sprintf
(
'%s/gr_genes_top_%s_%s.txt'
,
output.dir
,
ref_ids
[
2
],
length
(
top_i2
$
gen
es
)
)
,
quote
=
FALSE
,
col.names
=
F
,
row.names
=
F
)
write.table
(
top_i1
$
genes
,
file
=
sprintf
(
'%s/gr_genes_top_%s_%s.txt'
,
output.dir
,
ref_ids
[
1
],
n_featur
es
),
file
=
sprintf
(
'%s/gr_genes_top_%s_%s.txt'
,
output.dir
,
ref_ids
[
1
],
length
(
top_i1
$
gen
es
)
)
,
quote
=
FALSE
,
col.names
=
F
,
row.names
=
F
)
length
(
intersect
(
top_i2
$
genes
,
top_i1
$
genes
))
#150
png
(
sprintf
(
"%s/venn_top_%s_%s.png"
,
output.dir
,
ref_ids
[
1
],
ref_ids
[
2
]),
...
...
@@ -132,9 +206,14 @@ dev.off()
# bottom-peaking genes
png
(
sprintf
(
"%s/gr_boxplot_bottom_%s.png"
,
output.dir
,
paste0
(
ref_ids
,
collapse
=
'_'
)),
width
=
100
,
height
=
130
,
res
=
300
,
units
=
'mm'
)
boxplot
(
list
(
bottom_i1
$
max
,
bottom_i2
$
max
),
ylab
=
'Maximum gradient'
,
names
=
ref_ids
)
points
(
x
=
c
(
1
,
2
),
y
=
c
(
bottom_i1
$
threshold
,
bottom_i2
$
threshold
),
col
=
'red'
,
pch
=
19
)
boxplot
(
list
(
bottom_i1
$
max
,
bottom_i2
$
max
),
ylab
=
'Maximum gradient'
,
names
=
ref_ids
,
cex
=
0.5
)
points
(
x
=
c
(
1
,
2
),
y
=
c
(
bottom_i1
$
threshold
,
bottom_i2
$
threshold
),
col
=
'red'
,
pch
=
19
,
cex
=
2
)
dev.off
()
write.table
(
intersect
(
bottom_i1
$
genes
,
bottom_i2
$
genes
),
file
=
sprintf
(
'%s/gr_genes_bottom_common_%s_%s_%s.txt'
,
output.dir
,
ref_ids
[
1
],
ref_ids
[
2
],
length
(
top_i2
$
genes
)),
quote
=
FALSE
,
col.names
=
F
,
row.names
=
F
)
write.table
(
bottom_i2
$
genes
,
file
=
sprintf
(
'%s/gr_genes_down_%s_%s.txt'
,
output.dir
,
ref_ids
[
2
],
n_features
),
quote
=
FALSE
,
col.names
=
F
,
row.names
=
F
)
...
...
@@ -156,52 +235,75 @@ dev.off()
# waves of down/upregulation
png
(
sprintf
(
"%s/gr_mean_%s.png"
,
output.dir
,
ref_ids
[
2
]),
width
=
130
,
height
=
100
,
res
=
300
,
units
=
'mm'
)
plot
(
x
,
colMeans
(
abs
(
gr_i2_wt
[[
2
]][
bottom_i2
$
genes
,])),
y
<-
colMeans
(
abs
(
gr_i2_wt
[[
2
]][
bottom_i2
$
genes
,]))
z
<-
colMeans
(
abs
(
gr_i2_wt
[[
2
]][
top_i2
$
genes
,]))
plot
(
x
,
y
,
xlab
=
'Similarity score'
,
ylab
=
'Average gradient'
,
main
=
ref_ids
[
2
],
col
=
'blue'
)
# downregulated genes
points
(
x
,
colMeans
(
abs
(
gr_i2_wt
[[
2
]][
top_i2
$
genes
,])),
pch
=
19
,
col
=
'red'
)
# upregulated genes
col
=
'blue'
,
ylim
=
c
(
min
(
y
,
z
),
max
(
y
,
z
)))
# downregulated genes
points
(
x
,
z
,
pch
=
19
,
col
=
'red'
)
# upregulated genes
legend
(
"topleft"
,
legend
=
c
(
'Down'
,
'Up'
),
pch
=
c
(
21
,
19
),
col
=
c
(
'blue'
,
'red'
),
title
=
"Genes"
)
abline
(
v
=
tzs
[,
2
],
lty
=
'dashed'
)
dev.off
()
png
(
sprintf
(
"%s/gr_mean_%s.png"
,
output.dir
,
ref_ids
[
1
]),
width
=
130
,
height
=
100
,
res
=
300
,
units
=
'mm'
)
plot
(
x
,
colMeans
(
abs
(
gr_i1_wt
[[
1
]][
bottom_i2
$
genes
,])),
y
<-
colMeans
(
abs
(
gr_i1_wt
[[
1
]][
bottom_i1
$
genes
,]))
z
<-
colMeans
(
abs
(
gr_i1_wt
[[
1
]][
top_i1
$
genes
,]))
plot
(
x
,
y
,
xlab
=
'Similarity score'
,
ylab
=
'Average gradient'
,
main
=
ref_ids
[
1
],
col
=
'blue'
)
points
(
x
,
colMeans
(
abs
(
gr_i1_wt
[[
1
]][
top_i2
$
genes
,])),
pch
=
19
,
col
=
'red'
)
col
=
'blue'
,
ylim
=
c
(
min
(
y
,
z
),
max
(
y
,
z
)))
points
(
x
,
z
,
pch
=
19
,
col
=
'red'
)
legend
(
"topleft"
,
legend
=
c
(
'Down'
,
'Up'
),
pch
=
c
(
21
,
19
),
col
=
c
(
'blue'
,
'red'
),
title
=
"Genes"
)
abline
(
v
=
tzs
[,
1
],
lty
=
'dashed'
)
dev.off
()
# Pcg
glist
<-
c
(
FIE
,
K27_genes
,
K27K4_genes
)
lab
<-
ifelse
(
rownames
(
sc.mat
)
%in%
glist
,
'PcG'
,
'-'
)
names
(
lab
)
<-
rownames
(
sc.mat
)
top_i1
<-
plot_gr
(
gr_i1_wt
[[
1
]][
features
,],
n_features
,
which_genes
=
'top'
,
label
=
lab
)
top_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]][
features
,],
n_features
,
which_genes
=
'top'
,
label
=
lab
)
proportions
(
table
(
lab
[
top_i2
$
genes
]))
proportions
(
table
(
lab
[
top_i1
$
genes
]))
bottom_i1
<-
plot_gr
(
gr_i1_wt
[[
1
]][
features
,],
n_features
,
which_genes
=
'bottom'
,
label
=
lab
)
bottom_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]][
features
,],
n_features
,
which_genes
=
'bottom'
,
label
=
lab
)
proportions
(
table
(
lab
[
bottom_i1
$
genes
]))
proportions
(
table
(
lab
[
bottom_i2
$
genes
]))
proportions
(
table
(
lab
))
head
(
labels
)
cols
<-
c
(
'lightblue'
,
'darkblue'
,
'white'
,
'grey'
)
names
(
cols
)
<-
levels
(
labels
)
top_i1
<-
plot_gr
(
gr_i1_wt
[[
1
]][
features
,],
n_features
,
which_genes
=
'top'
,
label
=
labels
,
cols
=
cols
)
top_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]][
features
,],
n_features
,
which_genes
=
'top'
,
label
=
labels
,
cols
=
cols
)
proportions
(
table
(
labels
[
top_i2
$
genes
]))
proportions
(
table
(
labels
[
top_i1
$
genes
]))
bottom_i1
<-
plot_gr
(
gr_i1_wt
[[
1
]][
features
,],
n_features
,
which_genes
=
'bottom'
,
label
=
labels
,
cols
=
cols
)
bottom_i2
<-
plot_gr
(
gr_i2_wt
[[
2
]][
features
,],
n_features
,
which_genes
=
'bottom'
,
label
=
labels
,
cols
=
cols
)
proportions
(
table
(
labels
[
bottom_i1
$
genes
]))
proportions
(
table
(
labels
[
bottom_i2
$
genes
]))
proportions
(
table
(
labels
))
png
(
sprintf
(
"%s/props_%s_%s.png"
,
output.dir
,
ref_ids
[
2
],
output.name
),
width
=
100
,
height
=
100
,
res
=
300
,
units
=
'mm'
)
rbind
(
'top'
=
proportions
(
table
(
labels
[
top_i2
$
genes
])),
'bottom'
=
proportions
(
table
(
labels
[
bottom_i2
$
genes
])),
'all'
=
proportions
(
table
(
labels
)))
%>%
data.frame
()
%>%
rownames_to_column
(
var
=
'set'
)
%>%
pivot_longer
(
cols
=
c
(
2
,
3
,
4
,
5
),
names_to
=
'type'
,
values_to
=
'p'
)
%>%
mutate
(
type
=
gsub
(
'\\.o'
,
'-o'
,
type
))
%>%
ggplot
(
aes
(
x
=
set
,
y
=
p
,
fill
=
type
))
+
geom_col
()
+
scale_fill_manual
(
values
=
cols
)
dev.off
()
png
(
sprintf
(
"%s/heatmap_bottom_%s_%s.png"
,
output.dir
,
ref_ids
[
2
],
output.name
),
width
=
1
3
0
,
height
=
1
3
0
,
res
=
300
,
units
=
'mm'
)
width
=
1
0
0
,
height
=
1
5
0
,
res
=
300
,
units
=
'mm'
)
bottom_i2
$
heatmap
dev.off
()
png
(
sprintf
(
"%s/heatmap_bottom_%s_%s.png"
,
output.dir
,
ref_ids
[
1
],
output.name
),
width
=
1
3
0
,
height
=
1
3
0
,
res
=
300
,
units
=
'mm'
)
width
=
1
0
0
,
height
=
1
5
0
,
res
=
300
,
units
=
'mm'
)
bottom_i1
$
heatmap
dev.off
()
png
(
sprintf
(
"%s/heatmap_top_%s_%s.png"
,
output.dir
,
ref_ids
[
2
],
output.name
),
width
=
1
3
0
,
height
=
1
3
0
,
res
=
300
,
units
=
'mm'
)
width
=
1
0
0
,
height
=
1
5
0
,
res
=
300
,
units
=
'mm'
)
top_i2
$
heatmap
dev.off
()
png
(
sprintf
(
"%s/heatmap_top_%s_%s.png"
,
output.dir
,
ref_ids
[
1
],
output.name
),
width
=
1
3
0
,
height
=
1
3
0
,
res
=
300
,
units
=
'mm'
)
width
=
1
0
0
,
height
=
1
5
0
,
res
=
300
,
units
=
'mm'
)
top_i1
$
heatmap
dev.off
()
...
...
This diff is collapsed.
Click to expand it.
src/gradients_fcts.R
+
44
−
7
View file @
5840e6ae
...
...
@@ -23,7 +23,8 @@ epidermis_gr <- function(x, dx, sd, scores.mat, sc.mat, cells, method, cores){
return
(
output
)
}
plot_gr
<-
function
(
matrix
,
n_features
,
which_genes
,
label
){
# heatmap
plot_gr
<-
function
(
matrix
,
n_features
,
which_genes
,
label
,
cols
=
NULL
){
output
<-
NULL
if
(
which_genes
==
'top'
){
min.matrix
<-
apply
(
matrix
,
1
,
max
)
...
...
@@ -48,17 +49,28 @@ plot_gr <- function(matrix, n_features, which_genes, label){
output
$
which.max
<-
which.min.matrix
output
$
genes
<-
g
paletteLength
<-
50
myColor
<-
colorRampPalette
(
c
(
"black"
,
"white"
,
"purple"
))(
paletteLength
)
# length(breaks) == length(paletteLength) + 1
# use floor and ceiling to deal with even/odd length pallettelengths
myBreaks
<-
c
(
seq
(
min
(
matrix
[
g
,]),
0
,
length.out
=
ceiling
(
paletteLength
/
2
)
+
1
),
seq
(
max
(
matrix
[
g
,])
/
paletteLength
,
max
(
matrix
[
g
,]),
length.out
=
floor
(
paletteLength
/
2
)))
if
(
is.null
(
label
)){
hm
<-
pheatmap
::
pheatmap
(
matrix
[
g
,],
cluster_cols
=
FALSE
,
cluster_rows
=
F
,
show_rownames
=
F
,
show_colnames
=
T
)
cluster_rows
=
F
,
show_rownames
=
F
,
show_colnames
=
T
,
color
=
myColor
,
breaks
=
myBreaks
)
}
else
{
cols
<-
c
(
'gray'
,
'red'
)
names
(
cols
)
<-
unique
(
label
)
print
(
cols
)
if
(
is.null
(
cols
)
)
{
cols
<-
make_pal
(
label
)
}
hm
<-
pheatmap
::
pheatmap
(
matrix
[
g
,],
cluster_cols
=
FALSE
,
cluster_rows
=
F
,
show_rownames
=
F
,
show_colnames
=
T
,
annotation_row
=
data.frame
(
'PcG'
=
label
[
g
]),
annotation_colors
=
list
(
'PcG'
=
cols
))
annotation_colors
=
list
(
'PcG'
=
cols
),
color
=
myColor
,
breaks
=
myBreaks
)
}
output
$
heatmap
<-
hm
...
...
@@ -75,3 +87,28 @@ plot_venneuler <- function(lists, labels){
#dev.off()
return
(
v
)
}
plot_gr_feature
<-
function
(
gr_mat
,
ref_ids
,
feature
){
plot
(
x
,
gr_mat
[[
1
]][
feature
,],
xlab
=
'Identity score with reference'
,
ylab
=
'Expression gradient'
,
pch
=
15
,
main
=
feature
,
ylim
=
c
(
min
(
gr_mat
[[
1
]][
feature
,],
gr_mat
[[
2
]][
feature
,]),
max
(
gr_mat
[[
1
]][
feature
,],
gr_mat
[[
2
]][
feature
,])))
abline
(
h
=
0
)
points
(
x
,
gr_mat
[[
2
]][
feature
,],
ylab
=
'Expression gradient'
,
pch
=
21
)
legend
(
"topleft"
,
legend
=
ref_ids
,
pch
=
c
(
15
,
21
),
cex
=
0.8
,
title
=
"Reference"
)
}
find_tzs
<-
function
(
cor
,
cells
,
factor
,
id_name
){
l_zone
<-
split
(
cor
[
cells
],
factor
)
md
<-
glm
(
cor
[
cells
]
~
factor
+0
,
family
=
'gaussian'
)
#zone_clusters <- kmeans(cor.ref[,1], centers = 3)
boxplot
(
l_zone
,
border
=
brewer.pal
(
length
(
levels
(
factor
)),
'Set1'
),
col
=
'white'
,
main
=
id_name
)
points
(
x
=
1
:
3
,
md
$
coefficients
,
pch
=
5
,
col
=
'black'
)
abline
(
h
=
md
$
coefficients
[
1
:
2
]
+
diff
(
md
$
coefficients
)
/
2
,
lty
=
'dashed'
)
tzs
<-
md
$
coefficients
[
1
:
2
]
+
diff
(
md
$
coefficients
)
/
2
return
(
tzs
)
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment