Skip to content
Snippets Groups Projects
Commit aec75ad3 authored by mcariou's avatar mcariou
Browse files

update remove covidcomp

parent e9dcd68b
No related branches found
No related tags found
No related merge requests found
\documentclass[11pt, oneside]{article} % use "amsart" instead of "article" for AMSLaTeX format
%\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots.
%\geometry{letterpaper} % ... or a4paper or a5paper or ...
%\geometry{landscape} % Activate for for rotated page geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
%\usepackage{graphicx} % Use pdf, png, jpg, or eps with pdflatex; use eps in DVI mode
% TeX will automatically convert eps --> pdf in pdflatex
%\usepackage{amssymb}
\usepackage[utf8]{inputenc}
%\usepackage[cyr]{aeguill}
%\usepackage[francais]{babel}
%\usepackage{hyperref}
\title{Positive selection on genes interacting with SARS-Cov2, comparison of different analysis}
\author{Marie Cariou}
\date{Mai 2020} % Activate to display a given date or no date
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Files manipulations}
I will compare Janet Young's results to DGINN results, on the SAME alignment.
\subsection{Read Janet Young's table}
<<>>=
tab<-read.delim("/home/adminmarie/Documents/CIRI_BIBS_projects/2020_05_Etienne_covid/data/COVID_PAMLresults_332hits_plusBatScreens_2020_Apr14.csv",
fill=T, h=T, dec=",")
dim(tab)
names(tab)
@
\subsection{Read DGINN table}
<<>>=
dginn<-read.delim("/home/adminmarie/Documents/CIRI_BIBS_projects/2020_05_Etienne_covid/data/summary.res",
fill=T, h=T)
dim(dginn)
names(dginn)
@
\subsection{Joining table}
\subsubsection{Based on which column?}
<<>>=
head(tab)[,1:5]
# gene avec un nom bizar dans certaines colomne
tab[158,1:10]
#
length(unique(dginn$Gene))
length(unique(tab$PreyGene))
length(unique(tab$Gene.name))
#quelle paire de colonne contient le plus de noms identiques
sum(unique(dginn$Gene) %in% unique(tab$PreyGene))
sum(unique(dginn$Gene) %in% unique(tab$Gene.name))
# dginn$Gene et tab$Gene.name presque identiques sauf 1 ligne.
# Je soupçonne que c'est celle là:
tab[158,1:10]
# Verif:
tab[,1:10][(tab$Gene.name %in% unique(dginn$Gene))==F,]
# yep
# Remplacement manuel par
as.character(unique(dginn$Gene)[(unique(dginn$Gene) %in% tab$Gene.name)==F])
# dans le tableau de Janet
val_remp=as.character(unique(dginn$Gene)[(unique(dginn$Gene) %in% tab$Gene.name)==F])
tab$Gene.name<-as.character(tab$Gene.name)
tab$Gene.name[158]<-val_remp
sum(unique(dginn$Gene) %in% unique(tab$Gene.name))
@
\subsubsection{New columns}
<<>>=
add_col<-function(method="PamlM1M2"){
tmp<-dginn[dginn$Method==method,
c("Gene", "Omega", "PosSel", "PValue", "NbSites", "PSS")]
names(tmp)<-c("Gene.name", paste0("Omega_", method),
paste0("PosSel_", method), paste0("PValue_", method),
paste0("NbSites_", method), paste0("PSS_", method))
tab<-merge(tab, tmp, by="Gene.name")
return(tab)
}
tab<-add_col("PamlM1M2")
tab<-add_col("PamlM7M8")
tab<-add_col("BppM1M2")
tab<-add_col("BppM7M8")
# Manip pour la colonne BUSTED
tmp<-dginn[dginn$Method=="BUSTED",c("Gene", "Omega", "PosSel", "PValue")]
names(tmp)<-c("Gene.name", "Omega_BUSTED", "PosSel_BUSTED", "PValue_BUSTED")
tab<-merge(tab, tmp, by="Gene.name")
tmp<-dginn[dginn$Method=="MEME",c("Gene", "NbSites", "PSS")]
names(tmp)<-c("Gene.name", "NbSites_MEME", "PSS_MEME")
tab<-merge(tab, tmp, by="Gene.name")
@
\subsection{Write new table}
<<>>=
write.table(tab,
"COVID_PAMLresults_332hits_plusBatScreens_plusDGINN_20200506.txt",
row.names=F, quote=F, sep="\t")
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Comparisons Primates}
\subsection{DGINN results on Janet Young's alignments (DGINN-Young-primate) VS Janet Young's results}
\subsubsection{Omega}
Comparaison des Omega: colonne L "whole.gene.dN.dS.model.0" VS colonne "omega" dans la sortie de dginn.
<<omegaM7M8>>=
plot(tab$whole.gene.dN.dS.model.0, tab$Omega_PamlM7M8,
xlab="Omega Young-primate", ylab="Omega DGINN-Young-primate")
@
Quels sont les 2 gènes qui s'écartent de la bissectrice?
<<>>=
tab[tab$whole.gene.dN.dS.model.0<0.2 & tab$Omega_PamlM7M8>0.4,c("Gene.name")]
tab[tab$whole.gene.dN.dS.model.0<0.6 & tab$Omega_PamlM7M8>0.7,c("Gene.name")]
@
\subsubsection{pvalues pour M7M8}
Cette fois, je compare la colonne R "pVal.M8vsM7", à la colonne "PValue" + ligne "PamlM7M8", pour la sortie de dginn.
<<pvalM7M8>>=
plot(tab$pVal.M8vsM7, tab$PValue_PamlM7M8, pch=20,
xlab="p-value Young-primate", ylab="p-value DGINN-Young-primate", main="M7vM8 Paml")
points(tab$pVal.M8vsM7[tab$pVal.M8vsM7>0.05 & tab$PValue_PamlM7M8<0.05],
tab$PValue_PamlM7M8[tab$pVal.M8vsM7>0.05 & tab$PValue_PamlM7M8<0.05],
col="red", pch=20)
points(tab$pVal.M8vsM7[tab$pVal.M8vsM7<0.05 & tab$PValue_PamlM7M8>0.05],
tab$PValue_PamlM7M8[tab$pVal.M8vsM7<0.05 & tab$PValue_PamlM7M8>0.05],
col="green", pch=20)
legend("topleft", c("<0.05 in DGINN-Young-primate PamlM7M8 but >0.05 in Young M8vsM7",
"<0.05 in Young M8vsM7 but >0.05 in DGINN-Young-primate PamlM7M8"),
pch=20, col=c("red", "green"))
@
Quels sont les gènes en couleur:
<<>>=
na.omit(tab[(tab$pVal.M8vsM7>0.05 & tab$PValue_PamlM7M8<0.05),
c("Gene.name", "pVal.M8vsM7", "PValue_PamlM7M8", "whole.gene.dN.dS.model.0", "Omega_PamlM7M8")])
na.omit(tab[(tab$pVal.M8vsM7<0.05 & tab$PValue_PamlM7M8>0.05),
c("Gene.name", "pVal.M8vsM7", "PValue_PamlM7M8", "whole.gene.dN.dS.model.0", "Omega_PamlM7M8")])
@
Focus sur le gène CIT pour lequel la différence est vraiment assez importante:
<<cit>>=
dginn[dginn$Gene=="CIT",]
tab[tab$Gene.name=="CIT",1:20]
@
\subsubsection{Concordance des méthodes}
Est-ce que les gènes avec une faible p-value sont détecté par 1,2,3,4 ou 5 méthodes en général?
<<stripchart>>=
nontab<-tab[tab$pVal.M8vsM7>=0.05,c("Gene.name","PosSel_PamlM1M2", "PosSel_PamlM7M8","PosSel_BppM1M2",
"PosSel_BppM7M8", "PosSel_BUSTED")]
non<-apply(nontab, 1, function(x) sum(x=="Y"))
ouitab<-tab[tab$pVal.M8vsM7<0.05,c("Gene.name","PosSel_PamlM1M2", "PosSel_PamlM7M8","PosSel_BppM1M2",
"PosSel_BppM7M8", "PosSel_BUSTED")]
oui<-apply(ouitab, 1, function(x) sum(x=="Y"))
stripchart(x=list(oui, non), method="jitter", jitter=0.2,
vertical=T, pch=20, cex=0.5,
group.names=c("Yes Young", "No Young"),
ylab="Nb YES from dginn")
@
\subsection{Résultats Cooper-primate VS Young-primate}
\subsubsection{How many genes in the Cooper-primate columns?}
<<>>=
# Temporary table with necessary columns
tmp<-tab[,c("Gene.name", "whole.gene.dN.dS.model.0", "pVal.M8vsM7",
"cooper.primates.Gene", "cooper.primates.Average_dNdS",
"cooper.primates.M7.M8_p_value")]
dim(tmp)
# Lines with values in the cooper Gene names column
dim(tmp[tmp$cooper.primates.Gene!="",])
# Line with values (no NA) in the Cooper dNdS column
sum(is.na(tmp$cooper.primates.Average_dNdS)==F)
# Line with values (no NA) in the Cooper pvalue column
sum(is.na(tmp$cooper.primates.M7.M8_p_value)==F)
@
\subsubsection{Omega}
Comparaison des Omega: colonne L "whole.gene.dN.dS.model.0" VS colonne "cooper.primates.Average\_dNdS"
<<omegaM7M8coop>>=
plot(tab$whole.gene.dN.dS.model.0, tab$cooper.primates.Average_dNdS,
xlab="Omega Young-primate", ylab="Omega Cooper-primate")
@
\subsubsection{pvalues pour M7M8}
Cette fois, je compare la colonne R "pVal.M8vsM7", à la colonne cooper.primates.M7.M8\_p\_value (p-value de l'analyse de Cooper).
<<pvalM7M8coop>>=
plot(tab$pVal.M8vsM7, tab$cooper.primates.M7.M8_p_value, pch=20,
xlab="p-value Young", ylab="p-value Cooper-primate", main="M7vM8 Paml-primate")
points(tab$pVal.M8vsM7[tab$pVal.M8vsM7>0.05 & tab$cooper.primates.M7.M8_p_value<0.05],
tab$cooper.primates.M7.M8_p_value[tab$pVal.M8vsM7>0.05 & tab$cooper.primates.M7.M8_p_value<0.05],
col="red", pch=20)
points(tab$pVal.M8vsM7[tab$pVal.M8vsM7<0.05 & tab$cooper.primates.M7.M8_p_value>0.05],
tab$cooper.primates.M7.M8_p_value[tab$pVal.M8vsM7<0.05 & tab$cooper.primates.M7.M8_p_value>0.05],
col="green", pch=20)
legend("topleft", c("<0.05 in Cooper PamlM7M8 but >0.05 in Young M8vsM7",
"<0.05 in Young M8vsM7 but >0.05 in Cooper PamlM7M8"),
pch=20, col=c("red", "green"))
@
\subsection{Résultats DGINN sur alignement de Janet-Young (DGINN-Young-primate) VS Cooper-primates}
\subsubsection{Omega}
Comparaison des Omega: colonne colonne "cooper.primates.Average\_dNdS" VS omega de DGINN.
<<omegaM7M8comp3>>=
plot(tab$Omega_PamlM7M8, tab$cooper.primates.Average_dNdS,
xlab="Omega DGINN-Young-primate", ylab="Omega Cooper-primate")
@
\subsubsection{pvalues pour M7M8}
Cette fois, je compare la colonne R "pVal.M8vsM7", à la colonne "PValue" + ligne "PamlM7M8", pour la sortie de dginn.
<<pvalM7M8comp3>>=
plot(tab$PValue_PamlM7M8, tab$cooper.primates.M7.M8_p_value, pch=20,
xlab="p-value DGINN-Young-primate", ylab="p-value Cooper-primate", main="M7vM8 Paml")
points(tab$PValue_PamlM7M8[tab$PValue_PamlM7M8>0.05 & tab$cooper.primates.M7.M8_p_value<0.05],
tab$cooper.primates.M7.M8_p_value[tab$PValue_PamlM7M8>0.05 & tab$cooper.primates.M7.M8_p_value<0.05],
col="red", pch=20)
points(tab$PValue_PamlM7M8[tab$PValue_PamlM7M8<0.05 & tab$cooper.primates.M7.M8_p_value>0.05],
tab$cooper.primates.M7.M8_p_value[tab$PValue_PamlM7M8<0.05 & tab$cooper.primates.M7.M8_p_value>0.05],
col="green", pch=20)
legend("topleft", c("<0.05 in Cooper-primate PamlM7M8 but >0.05 in DGINN-Young-primate M8vsM7",
"<0.05 in DGINN-Young-primate M8vsM7 but >0.05 in Cooper-primate PamlM7M8"),
pch=20, col=c("red", "green"))
@
\subsection{Overlap}
I will draw a venn diagramm for the positive genes in the 3 analyses.
\subsubsection{Library and subtable}
<<sub>>=
library(VennDiagram)
# keeps only genes analysed in all 3 experiments
tmp<-na.omit(tab[,c("Gene.name", "pVal.M8vsM7", "cooper.primates.M7.M8_p_value",
"PosSel_PamlM7M8", "PValue_PamlM7M8")])
dim(tmp)
@
Il reste 186 gènes
<<vennprimate>>=
area1dginn<-sum(tmp$PosSel_PamlM7M8=="Y")
area2jean<-sum(tmp$pVal.M8vsM7<0.05)
area3coop<-sum(tmp$cooper.primates.M7.M8_p_val<0.05, na.rm=T)
n12<-sum(tmp$PosSel_PamlM7M8=="Y" & tmp$pVal.M8vsM7<0.05)
n23<-sum(tmp$pVal.M8vsM7<0.05 & tmp$cooper.primates.M7.M8_p_val<0.05, na.rm=T)
n13<-sum(tmp$PosSel_PamlM7M8=="Y" & tmp$cooper.primates.M7.M8_p_val<0.05, na.rm=T)
n123<-sum(tmp$PosSel_PamlM7M8=="Y" & tmp$pVal.M8vsM7<0.05 &
tmp$cooper.primates.M7.M8_p_val<0.05, na.rm=T)
draw.triple.venn(area1dginn, area2jean, area3coop,
n12, n23, n13, n123,
category=c("DGINN-Young-primate", "Young-primate", "Cooper-primate"))
@
\subsection{Mondrian}
<<mondrianprimates>>=
library(Mondrian)
monddata<-as.data.frame(tmp$Gene.name)
monddata$primates_dginn_young<-ifelse(tmp$PosSel_PamlM7M8=="Y", 1,0)
monddata$primates_young<-ifelse(tmp$pVal.M8vsM7<0.05, 1, 0)
monddata$primates_cooper<-ifelse(tmp$cooper.primates.M7.M8_p_val<0.05, 1, 0)
mondrian(monddata[,2:4])
@
%\subsection{Comparaison des codons?}
%Subtable with lines with both methods showing positive selection.
<<eval=FALSE, echo=FALSE>>=
%<<selec>>=
#cas ou selection + dans les 2 cas
sel<-na.omit(tab[(tab$pVal.M8vsM7<0.05 & tab$PValue_PamlM7M8<0.05),c("Gene.name", "pVal.M8vsM7", "PValue_PamlM7M8", "whole.gene.dN.dS.model.0", "Omega_PamlM7M8", "Number.of.codons.with.BEB....0.9", "Codons.under.positive.selection..BEB..0.9...alignment.position.", "NbSites_PamlM7M8","PSS_PamlM7M8")])
dim(sel)
head(sel)
@
<<nsites, eval=FALSE, echo=FALSE>>=
%<<nsites>>=
plot(sel$Number.of.codons.with.BEB....0.9, sel$NbSites_PamlM7M8)
# toujours plus de codon dans la version de janet Young
listdginn<-sapply(sel$PSS_PamlM7M8, function(x){
tmp<-strsplit(as.character(x), split=",")[[1]]
names(tmp)<-rep("dginn", length(tmp))
return(tmp)
})
names(listdginn)<-sel$Gene.name
listjanet<-sapply(sel$Codons.under.positive.selection..BEB..0.9...alignment.position., function(x){
tmp<-strsplit(as.character(x), split=",")[[1]]
tmp2<-sapply(tmp, function(x) strsplit(as.character(x), split="_")[[1]][1])
tmp2<-unlist(tmp2)
names(tmp2)<-rep("young", length(tmp2))
return(unlist(tmp2))
})
names(listjanet)<-sel$Gene.name
listjoined<-mapply(c, listdginn, listjanet, SIMPLIFY=FALSE)
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Bats Comparisons}
\subsection{Add DGINN results for Bats}
Lecture du tableau.
<<readtab4test, eval=F>>=
# Tableau tel qu'il est à cet étape du script, pour travailler sur l'ajout du nouveau tableau bats sans recommencer au début à chaque fois.
tab<-read.delim("COVID_PAMLresults_332hits_plusBatScreens_plusDGINN_20200506.txt",
header=TRUE, sep="\t")
@
<<>>=
#dginnbatsold<-read.delim("/home/adminmarie/Documents/CIRI_BIBS_projects/2020_05_Etienne_covid/data/2020_bats_completeResults.csv",
# fill=T, h=T)
dginnbats<-read.delim("/home/adminmarie/Documents/CIRI_BIBS_projects/2020_05_Etienne_covid/data/DGINN_202005281339summary_cleaned.tab",
fill=T, h=T)
dim(dginnbats)
names(dginnbats)
length(unique(dginnbats$Gene))
length(unique(tab$cooper.batsGene))
table(unique(tab$cooper.batsGene) %in% unique(dginnbats$Gene))
@
Which genes in the Cooper table are not in the gene output?
<<>>=
unique(tab$cooper.batsGene)[unique(tab$cooper.batsGene) %in% unique(dginnbats$Gene)==F]
@
Merge tables:
<<bats>>=
names(dginnbats)<-c("File", "bats_Name", "cooper.batsGene", paste0("bats_", names(dginnbats)[-(1:3)]))
tab<-merge(tab,dginnbats, by="cooper.batsGene", all.x=T)
@
\subsection{Cooper-bats results vs DGINN-bats results}
\subsubsection{Omega}
<<omegaM7M8bats>>=
plot(tab$cooper.batsAverage_dNdS, tab$bats_omegaM0codeml,
xlab="Omega Cooper-bats", ylab="Omega DGINN-bats")
@
\subsubsection{pvalues pour M7M8}
<<pvalM7M8bats>>=
tab$bats_codemlM7M8.p.value<-as.numeric(as.character(tab$bats_codemlM7M8.p.value))
plot(tab$cooper.batsM7.M8_p_value, tab$bats_codemlM7M8.p.value, pch=20,
xlab="p-value Cooper-bats", ylab="p-value DGINN-bats", main="M7vM8 Paml")
points(tab$cooper.batsM7.M8_p_value[tab$cooper.batsM7.M8_p_value>0.05 & tab$bats_codemlM7M8.p.value<0.05],
tab$bats_codemlM7M8.p.value[tab$cooper.batsM7.M8_p_value>0.05 & tab$bats_codemlM7M8.p.value<0.05],
col="red", pch=20)
points(tab$cooper.batsM7.M8_p_value[tab$cooper.batsM7.M8_p_value<0.05 & tab$bats_codemlM7M8.p.value>0.05],
tab$bats_codemlM7M8.p.value[tab$cooper.batsM7.M8_p_value<0.05 & tab$bats_codemlM7M8.p.value>0.05],
col="green", pch=20)
legend("topleft", c("<0.05 in DGINN-bats but >0.05 in Cooper-bats",
"<0.05 in Cooper-bats but >0.05 in DGINN-bats"),
pch=20, col=c("red", "green"))
@
\subsection{Comparaison Cooper-Hawkins}
\subsubsection{pvalues pour M7M8}
<<pvalM7M8comp2>>=
plot(tab$cooper.batsM7.M8_p_value, tab$hawkins_Positive.Selection..M8vM8a.p.value,
pch=20, xlab="p-value Cooper-bats", ylab="p-value hawkins-bats", main="M7vM8 Paml")
points(tab$cooper.batsM7.M8_p_value[tab$cooper.batsM7.M8_p_value>0.05 &
tab$hawkins_Positive.Selection..M8vM8a.p.value<0.05],
tab$hawkins_Positive.Selection..M8vM8a.p.value[tab$cooper.batsM7.M8_p_value>0.05 &
tab$hawkins_Positive.Selection..M8vM8a.p.value<0.05],
col="red", pch=20)
points(tab$cooper.batsM7.M8_p_value[tab$cooper.batsM7.M8_p_value<0.05 &
tab$hawkins_Positive.Selection..M8vM8a.p.value>0.05],
tab$hawkins_Positive.Selection..M8vM8a.p.value[tab$cooper.batsM7.M8_p_value<0.05 &
tab$hawkins_Positive.Selection..M8vM8a.p.value>0.05],
col="green", pch=20)
legend("topleft", c("<0.05 in Hawkins but >0.05 in Cooper",
"<0.05 in Cooper but >0.05 in Hawkins"),
pch=20, col=c("red", "green"))
@
\subsection{Comparaison dginn-Hawkins}
<<pvalM7M8compautre>>=
plot(tab$hawkins_Positive.Selection..M8vM8a.p.value, tab$bats_codemlM7M8.p.value,
pch=20, xlab="p-value hawkins-bats", ylab="p-value DGINN-bats", main="M7vM8 Paml")
points(tab$hawkins_Positive.Selection..M8vM8a.p.value[tab$hawkins_Positive.Selection..M8vM8a.p.value>0.05 &
tab$bats_codemlM7M8.p.value<0.05],
tab$bats_codemlM7M8.p.value[tab$hawkins_Positive.Selection..M8vM8a.p.value>0.05 &
tab$bats_codemlM7M8.p.value<0.05], col="red", pch=20)
points(tab$hawkins_Positive.Selection..M8vM8a.p.value[tab$hawkins_Positive.Selection..M8vM8a.p.value<0.05 &
tab$bats_codemlM7M8.p.value>0.05],
tab$bats_codemlM7M8.p.value[tab$hawkins_Positive.Selection..M8vM8a.p.value<0.05 &
tab$bats_codemlM7M8.p.value>0.05], col="green", pch=20)
legend("topleft", c("<0.05 in DGINN-bats but >0.05 in Hawkins",
"<0.05 in Hawkinsbut >0.05 in DGINN-bats"),
pch=20, col=c("red", "green"))
@
\subsection{Diagramme de Venn}
I will draw a venn diagramm for the positive genes in the 3 analyses.
\subsubsection{subtab}
<<subbats>>=
tmp<-na.omit(tab[,c("Gene.name", "bats_codemlM7M8.p.value", "hawkins_Positive.Selection..M8vM8a.p.value", "cooper.batsM7.M8_p_value")])
dim(tmp)
@
154 genes (present in the 3 experiments)
\subsubsection{figure}
<<vennbats>>=
area1dginn<-sum(tmp$bats_codemlM7M8.p.value<0.05, na.rm=T)
area2hawk<-sum(tmp$hawkins_Positive.Selection..M8vM8a.p.value<0.05, na.rm=T)
area3coop<-sum(tmp$cooper.batsM7.M8_p_value<0.05, na.rm=T)
n12<-sum(tmp$bats_codemlM7M8.p.value<0.05 & tmp$hawkins_Positive.Selection..M8vM8a.p.value<0.05, na.rm=T)
n23<-sum(tmp$hawkins_Positive.Selection..M8vM8a.p.value<0.05 & tmp$cooper.batsM7.M8_p_value<0.05, na.rm=T)
n13<-sum(tmp$bats_codemlM7M8.p.value<0.05 & tmp$cooper.batsM7.M8_p_value<0.05, na.rm=T)
n123<-sum(tmp$bats_codemlM7M8.p.value<0.05 & tmp$hawkins_Positive.Selection..M8vM8a.p.value<0.05 & tmp$cooper.batsM7.M8_p_value<0.05, na.rm=T)
draw.triple.venn(area1dginn, area2hawk, area3coop,
n12, n23, n13, n123,
category=c("DGINN-Young-bats", "Hawkins-bats", "Cooper-bats"))
@
\subsection{Mondrian}
<<mondrianbats>>=
library(Mondrian)
monddata<-as.data.frame(tmp$Gene.name)
monddata$bats_dginn<-ifelse(tmp$bats_codemlM7M8.p.value<0.05, 1,0)
monddata$bats_hawkins<-ifelse(tmp$hawkins_Positive.Selection..M8vM8a.p.value<0.05, 1, 0)
monddata$bats_cooper<-ifelse(tmp$cooper.batsM7.M8_p_value<0.05, 1, 0)
mondrian(monddata[,2:4])
@
\section{To do}
Comparaison G4 pas G4
\end{document}
File deleted
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment