Skip to content
Snippets Groups Projects
Verified Commit d2603b08 authored by Laurent Modolo's avatar Laurent Modolo
Browse files

update M1_biosciences_clustering

parent 2b876eff
No related branches found
No related tags found
No related merge requests found
...@@ -37,7 +37,7 @@ $$ ...@@ -37,7 +37,7 @@ $$
$$ $$
\item Step $[h+1]$: update labels $\zbf$ when centers $\overline{\xbf}_1^{[h+1]},\hdots,\overline{\xbf}_K^{[h+1]}$ are updated \item Step $[h+1]$: update labels $\zbf$ when centers $\overline{\xbf}_1^{[h+1]},\hdots,\overline{\xbf}_K^{[h+1]}$ are updated
$$ $$
\widehat{z}_{i}^{[h]} = \arg \underset{1,\hdots,K}{\min} \left\{ d^2(\xbf_i,\overline{\xbf}_k^{[h+1]}) \right\} \widehat{z}_{i}^{[h+1]} = \arg \underset{1,\hdots,K}{\min} \left\{ d^2(\xbf_i,\overline{\xbf}_k^{[h+1]}) \right\}
$$ $$
\end{itemize} \end{itemize}
...@@ -55,22 +55,22 @@ $$ ...@@ -55,22 +55,22 @@ $$
\frametitle{Decreasing inertia} \frametitle{Decreasing inertia}
\begin{itemize} \begin{itemize}
\item Denoting by $[h]$ the step $h$ of the algorithm, $\zbf^{[h]}, \item Denoting by $[h]$ the step $h$ of the algorithm, $\zbf^{[h]},
\xbf^{[h]}$ \overline{\xbf}^{[h]}$
\item The inertia depends on both quantities $\Ibf_W(\zbf^{[h]},\xbf^{[h]})$ \item The inertia depends on both quantities $\Ibf_W(\zbf^{[h]},\overline{\xbf}^{[h]})$
\item Updating centers \item Updating centers
$$ $$
\Ibf_W(\zbf^{[h]},\xbf^{[h+1]}) = \sum_{i=1}^n \sum_{k=1}^K z_{ik}^{[h]} \Ibf_W(\zbf^{[h]},\overline{\xbf}^{[h+1]}) = \sum_{i=1}^n \sum_{k=1}^K z_{ik}^{[h]}
d^2(\xbf_i,\overline{\xbf}_k^{[h+1]}) d^2(\xbf_i,\overline{\xbf}_k^{[h+1]})
$$ $$
\item Updating labels \item Updating labels
$$ $$
\Ibf_W(\zbf^{[h+1]},\xbf^{[h+1]}) = \sum_{i=1}^n \sum_{k=1}^K z_{ik}^{[h+1]} \Ibf_W(\zbf^{[h+1]},\overline{\xbf}^{[h+1]}) = \sum_{i=1}^n \sum_{k=1}^K z_{ik}^{[h+1]}
d^2(\xbf_i,\overline{\xbf}_k^{[h+1]}) d^2(\xbf_i,\overline{\xbf}_k^{[h+1]})
$$ $$
\item The criterion decreases at each step \item The criterion decreases at each step
$$ $$
\Ibf_W(\zbf^{[h]},\xbf^{[h]}) \geq \Ibf_W(\zbf^{[h]},\xbf^{[h+1]}) \geq \Ibf_W(\zbf^{[h]},\overline{\xbf}^{[h]}) \geq \Ibf_W(\zbf^{[h]},\overline{\xbf}^{[h+1]}) \geq
\Ibf_W(\zbf^{[h+1]},\xbf^{[h+1]})$$ \Ibf_W(\zbf^{[h+1]},\overline{\xbf}^{[h+1]})$$
\end{itemize} \end{itemize}
\end{frame} \end{frame}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment