Newer
Older
\documentclass[11pt, oneside]{article} % use "amsart" instead of "article" for AMSLaTeX format
%\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots.
%\geometry{letterpaper} % ... or a4paper or a5paper or ...
%\geometry{landscape} % Activate for for rotated page geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
%\usepackage{graphicx} % Use pdf, png, jpg, or eps with pdflatex; use eps in DVI mode
% TeX will automatically convert eps --> pdf in pdflatex
%\usepackage{amssymb}
\usepackage[utf8]{inputenc}
%\usepackage[cyr]{aeguill}
%\usepackage[francais]{babel}
%\usepackage{hyperref}
\title{Positive selection on genes interacting with SARS-Cov2, comparison of different analysis}
\author{Marie Cariou}
\date{February 2021} % Activate to display a given date or no date
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Files manipulations}
<<>>=
workdir<-"/home/adminmarie/Documents/CIRI_BIBS_projects/2020_05_Etienne_covid/"
tab<-read.delim(paste0(workdir,
tab$Gene.name<-as.character(tab$Gene.name.x)
tab$Gene.name[tab$PreyGene=="MARC1"]<-"MARC1"
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
\subsection{Read DGINN Young table}
DGINN-Young-primate table correspond to DGINN results, on the SAME alignment as Young-primate.
I will merge the 2 tables.
<<>>=
dginnY<-read.delim(paste0(workdir,
"data/summary_primate_young.res"),
fill=T, h=T)
dim(dginnY)
names(dginnY)
@
<<>>=
add_col<-function(method="PamlM1M2"){
tmp<-dginnY[dginnY$Method==method,
c("Gene", "Omega", "PosSel", "PValue", "NbSites", "PSS")]
names(tmp)<-c("Gene.name", paste0("Omega_", method),
paste0("PosSel_", method), paste0("PValue_", method),
paste0("NbSites_", method), paste0("PSS_", method))
tab<-merge(tab, tmp, by="Gene.name")
return(tab)
}
tab<-add_col("PamlM1M2")
tab<-add_col("PamlM7M8")
tab<-add_col("BppM1M2")
tab<-add_col("BppM7M8")
# Manip pour la colonne BUSTED
tmp<-dginnY[dginnY$Method=="BUSTED",c("Gene", "Omega", "PosSel", "PValue")]
names(tmp)<-c("Gene.name", "Omega_BUSTED", "PosSel_BUSTED", "PValue_BUSTED")
tab<-merge(tab, tmp, by="Gene.name")
tmp<-dginnY[dginnY$Method=="MEME",c("Gene", "NbSites", "PSS")]
names(tmp)<-c("Gene.name", "NbSites_MEME", "PSS_MEME")
tab<-merge(tab, tmp, by="Gene.name")
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Comparisons Primates}
\subsection{DGINN results on Janet Young's alignments (DGINN-Young-primate) VS Janet Young's results}
Comparaison des Omega: colonne L "whole.gene.dN.dS.model.0" VS colonne "omega" dans la sortie de dginn.
<<omegaM7M8>>=
tab$whole.gene.dN.dS.model.0<-as.numeric(as.character(tab$whole.gene.dN.dS.model.0))
plot(tab$whole.gene.dN.dS.model.0, tab$Omega_PamlM7M8,
xlab="Omega Young-primate", ylab="Omega DGINN-Young-primate")
abline(0,1)
outlier<-tab[tab$whole.gene.dN.dS.model.0<0.2 & tab$Omega_PamlM7M8>0.4,]
text(x=outlier$whole.gene.dN.dS.model.0,
y=(outlier$Omega_PamlM7M8+0.01),
outlier$Gene.name)
outlier<-tab[tab$whole.gene.dN.dS.model.0<0.6 & tab$Omega_PamlM7M8>0.7,]
text(x=outlier$whole.gene.dN.dS.model.0,
y=(outlier$Omega_PamlM7M8+0.01),
outlier$Gene.name)
@
\subsection{DGINN results on Janet Young's alignments (DGINN-Young-primate) VS DGINN-full's results}
Comparaison des Omega: colonne L "whole.gene.dN.dS.model.0" VS colonne "omega" dans la sortie de dginn.
<<omegaM7M8_2>>=
tab$'dginn.primate_omegaM0Bpp'<-as.numeric(as.character(tab$'dginn.primate_omegaM0Bpp'))
plot(tab$'dginn.primate_omegaM0Bpp', tab$Omega_PamlM7M8,
xlab="DGINN-full's", ylab="Omega DGINN-Young-primate")
abline(0,1)
outlier<-tab[tab$'dginn.primate_omegaM0Bpp'>0.4 & tab$Omega_PamlM7M8<0.2,]
text(x=outlier$'dginn.primate_omegaM0Bpp',
y=(outlier$Omega_PamlM7M8+0.01),
outlier$Gene.name)
outlier<-tab[tab$'dginn.primate_omegaM0Bpp'>0.5 & tab$Omega_PamlM7M8<0.4,]
text(x=outlier$'dginn.primate_omegaM0Bpp',
y=(outlier$Omega_PamlM7M8+0.01),
outlier$Gene.name)
outlier<-tab[tab$'dginn.primate_omegaM0Bpp'>0.2 & tab$Omega_PamlM7M8>0.6,]
text(x=outlier$'dginn.primate_omegaM0Bpp',
y=(outlier$Omega_PamlM7M8+0.01),
outlier$Gene.name)
@
\subsection{Janet Young's results (Young-primate) VS DGINN-full's results}
Comparaison des Omega: colonne L "whole.gene.dN.dS.model.0" VS colonne "omega" dans la sortie de dginn.
<<omegaM7M8_3>>=
plot(tab$whole.gene.dN.dS.model.0, as.numeric(as.character(tab$'dginn.primate_omegaM0Bpp')),
xlab="Omega Young-primate", ylab="DGINN-full's")
abline(0,1)
outlier<-tab[tab$whole.gene.dN.dS.model.0<0.4 & as.numeric(as.character(tab$'dginn.primate_omegaM0Bpp'))>0.5,]
text(x=outlier$whole.gene.dN.dS.model.0,
y=outlier$'dginn.primate_omegaM0Bpp',
outlier$Gene.name)
outlier<-tab[tab$whole.gene.dN.dS.model.0>0.7 & as.numeric(as.character(tab$'dginn.primate_omegaM0Bpp'))>0,]
y=outlier$'dginn.primate_omegaM0Bpp',
outlier$Gene.name)
outlier<-tab[tab$whole.gene.dN.dS.model.0<0.1 & as.numeric(as.character(tab$'dginn.primate_omegaM0Bpp'))>0.3,]
text(x=outlier$whole.gene.dN.dS.model.0+0.03,
y=outlier$'dginn.primate_omegaM0Bpp',
outlier$Gene.name)
@
\section{Overlap}
\subsection{Mondrian}
<<mondrianprimates>>=
library(Mondrian)
monddata<-as.data.frame(tab$Gene.name)
dim(monddata)
dginnyoungtmp<-rowSums(cbind(tab$PosSel_PamlM1M2=="Y", tab$PosSel_PamlM7M8=="Y",
tab$PosSel_BppM1M2=="Y", tab$PosSel_BppM7M8=="Y", tab$PosSel_BUSTED=="Y"))
#monddata$primates_dginn_young<-ifelse(tmp$PosSel_PamlM7M8=="Y", 1,0)
dginnfulltmp<-rowSums(cbind(tab$'dginn.primate_BUSTED'=="Y", tab$'dginn.primate_BppM1M2'=="Y",
tab$'dginn.primate_BppM7M8'=="Y", tab$'dginn.primate_codemlM1M2'=="Y", tab$'dginn.primate_codemlM7M8'=="Y"))
monddata$primates_young<-ifelse(tab$pVal.M8vsM7<0.05, 1, 0)
#monddata$primates_cooper<-ifelse(tab$cooper.primates.M7.M8_p_val<0.05, 1, 0)
monddata$primates_dginn_young<-ifelse(dginnyoungtmp>=3, 1,0)
monddata$primates_dginn_full<-ifelse(dginnfulltmp>=3, 1,0)
mondrian(na.omit(monddata[,2:4]), labels=c("Young", "DGINN-Young >=3", "DGINN-full >=3" ))
#####
monddata$primates_dginn_young<-ifelse(dginnyoungtmp>=4, 1,0)
monddata$primates_dginn_full<-ifelse(dginnfulltmp>=4, 1,0)
mondrian(na.omit(monddata[,2:4]), labels=c("Young", "DGINN-Young >=4", "DGINN-full >=4"))
@
Comparison of results with the same method.
<<>>=
monddata$primates_dginn_young<-tab$PosSel_BppM7M8=="Y"
monddata$primates_dginn_full<-tab$'dginn.primate_codemlM7M8'=="Y"
mondrian(na.omit(monddata[,2:4]), labels=c("Young", "DGINN-Young", "DGINN-full"), main="posel codeml M7M8")
@
\subsection{subsetR}
Just another representation of the same result, for now, I focuse on the gene positive in 3 methodes for DGINN analysis.
<<subsetprimates>>=
library(UpSetR)
upsetdata<-as.data.frame(tab$Gene.name)
upsetdata$primates_young<-ifelse(tab$pVal.M8vsM7<0.05, 1, 0)
###
upsetdata$primates_dginn_young<-ifelse(dginnyoungtmp>=3, 1,0)
upsetdata$primates_dginn_full<-ifelse(dginnfulltmp>=3, 1,0)
upset(na.omit(upsetdata), nsets = 3, matrix.color = "#DC267F",
main.bar.color = "#648FFF", sets.bar.color = "#FE6100")
<<setup, include=FALSE, cache=FALSE, tidy=TRUE>>=
options(tidy=TRUE, width=70)
@
List of the 34 genes found under positive selection in all analysis.
<<>>=
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==TRUE &
upsetdata$primates_dginn_young==TRUE &
upsetdata$primates_dginn_full==TRUE)]
List of the 13 genes found under positive selection in both Young analysis and DGINN-Young alignments (but not full-DGINN).
<<>>=
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==TRUE &
upsetdata$primates_dginn_young==TRUE &
upsetdata$primates_dginn_full==FALSE)]
@
List of the 1 gene found under positive selection in both DGINN analysis, but not Young.
<<>>=
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==FALSE &
upsetdata$primates_dginn_young==TRUE &
upsetdata$primates_dginn_full==TRUE)]
@
List of the 8 genes found under positive selection in both Young analysis and full-DGINN, but not DGINN-young.
<<>>=
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==TRUE &
upsetdata$primates_dginn_young==FALSE &
upsetdata$primates_dginn_full==TRUE)]
@
List of the 18 genes found under positive selection ONLY in Young analysis.
<<>>=
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==TRUE &
upsetdata$primates_dginn_young==FALSE &
upsetdata$primates_dginn_full==FALSE)]
@
List of the 1 genes found under positive selection ONLY in DGINN-Young.
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==FALSE &
upsetdata$primates_dginn_young==TRUE &
upsetdata$primates_dginn_full==FALSE)]
@
List of the 44 genes found under positive selection ONLY in full-DGINN.
<<>>=
upsetdata$`tab$Gene.name`[(upsetdata$primates_young==FALSE &
upsetdata$primates_dginn_young==FALSE &
upsetdata$primates_dginn_full==TRUE)]
@
<<echo=FALSE, results="hide">>=
dginnfulltmp<-rowSums(cbind(tab$'dginn.primate_BUSTED'=="Y",
tab$'dginn.primate_BppM1M2'=="Y",
tab$'dginn.primate_BppM7M8'=="Y",
tab$'dginn.primate_codemlM1M2'=="Y",
tab$'dginn.primate_codemlM7M8'=="Y"))
tab$Gene.name[dginnfulltmp>=4 & is.na(dginnfulltmp)==F]
tab$Gene.name[dginnfulltmp>=3 & is.na(dginnfulltmp)==F]
tmp<-tab[dginnfulltmp>=4 & is.na(dginnfulltmp)==F,
c("Gene.name","dginn.primate_BUSTED", "dginn.primate_BppM1M2",
"dginn.primate_BppM7M8","dginn.primate_codemlM1M2","dginn.primate_codemlM7M8")]
write.table(tmp, "geneList_DGINN_full_primate_pos4.txt", row.names=F, quote=F)
@
<<shiny, fig.height=11, echo=FALSE, results="hide", fig="hide">>=
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
makeFig1 <- function(df){
# prepare data for colors etc
colMethods <- c("deepskyblue4", "darkorange" , "deepskyblue3" , "mediumseagreen" , "yellow3" , "black")
nameMethods <- c("BUSTED", "BppM1M2", "BppM7M8", "codemlM1M2", "codemlM7M8", "MEME")
metColor <- data.frame(Name = nameMethods , Col = colMethods , stringsAsFactors = FALSE)
# subset for this specific figure
#df <- df[df$nbY >= 1, ] # to drop genes found by 0 methods (big datasets)
xt <- df[, c("BUSTED", "BppM1M2", "BppM7M8", "codemlM1M2", "codemlM7M8")]
xt$Gene <- df$Gene
nbrMeth <- 5
# reverse order of dataframe so that genes with the most Y are at the bottom (to be on top of the barplot)
xt[,1:5] <- ifelse(xt[,1:5] == "Y", 1, 0)
# sort and Filter the 0 lines
xt<-xt[order(rowSums(xt[,1:5])),]
xt<-xt[rowSums(xt[,1:5])>2,]
row.names(xt)<-xt$Gene
xt<-xt[,1:5]
colFig1 <- metColor[which(metColor$Name %in% colnames(xt)) , ]
##### PART 1 : NUMBER OF METHODS
par(xpd = NA , mar=c(2,7,4,0) , oma = c(0,0,0,0) , mgp = c(3,0.3,0))
h = barplot(
t(xt),
border = NA ,
axes = F ,
col = adjustcolor(colFig1$Col, alpha.f = 1),
horiz = T ,
las = 2 ,
main = "Methods detecting positive selection" ,
cex.main = 0.85,
cex.names = min(50/nrow(xt), 1.5)
)
axis(3, line = 0, at = c(0:nbrMeth), label = c("0", rep("", nbrMeth -1), nbrMeth), tck = 0.02)
legend("bottomleft",
horiz = T,
border = colFig1$Col,
legend = colFig1$Name,
fill = colFig1$Col,
cex = 0.8,
bty = "n",
xpd = NA
)
}
df<-read.delim(paste0(workdir,
"/data/DGINN_202005281649summary_cleaned.csv"),
fill=T, h=T, sep=",")