Newer
Older
\documentclass[11pt, oneside]{article} % use "amsart" instead of "article" for AMSLaTeX format
%\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots.
%\geometry{letterpaper} % ... or a4paper or a5paper or ...
%\geometry{landscape} % Activate for for rotated page geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
%\usepackage{graphicx} % Use pdf, png, jpg, or eps with pdflatex; use eps in DVI mode
% TeX will automatically convert eps --> pdf in pdflatex
%\usepackage{amssymb}
\usepackage[utf8]{inputenc}
%\usepackage[cyr]{aeguill}
%\usepackage[francais]{babel}
%\usepackage{hyperref}
\title{Positive selection on genes interacting with SARS-Cov2, comparison of different analysis}
\author{Marie Cariou}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Data}
Analysis were formatted by the script covid\_comp\_script0\_table.Rnw.
home<-"/home/adminmarie/Documents/"
workdir<-paste0(home, "CIRI_BIBS_projects/2020_05_Etienne_covid/")
tab<-read.delim(paste0(workdir,
"covid_comp/covid_comp_complete.txt"), h=T, sep="\t")
dim(tab)
@
home<-"/home/adminmarie/Documents/"
workdir<-paste0(home, "CIRI_BIBS_projects/2020_05_Etienne_covid/")
tab<-read.delim(paste0(workdir,
"covid_comp/covid_comp_alldginn.txt"), h=T, sep="\t")
dim(tab)
@
\section{Comparison of dataset}
\subsection{Data}
<<data>>=
tmp<-na.omit(tab[,c("Gene.name", "bats_BUSTED", "bats_BppM1M2",
"bats_BppM7M8", "bats_codemlM1M2", "bats_codemlM7M8",
"dginn.primate_codemlM1M2", "dginn.primate_codemlM7M8",
"dginn.primate_BppM1M2", "dginn.primate_BppM7M8",
"dginn.primate_BUSTED")])
col<-c("Gene.name", "bats_BUSTED", "bats_BppM1M2",
"bats_BppM7M8", "bats_codemlM1M2", "bats_codemlM7M8",
"dginn.primate_codemlM1M2", "dginn.primate_codemlM7M8",
"dginn.primate_BppM1M2", "dginn.primate_BppM7M8",
"dginn.primate_BUSTED")
tab$dginn.primate_omegaM0Bpp[tab$dginn.primate_omegaM0Bpp=="na"]<-NA
x=as.numeric(as.character(
tab$dginn.primate_omegaM0Bpp[tab$status=="shared"]))
tab$bats_omegaM0Bpp[tab$bats_omegaM0Bpp=="na"]<-NA
y=as.numeric(as.character(
tab$bats_omegaM0Bpp[tab$status=="shared"]))
names(x)<-tab$Gene.name[tab$status=="shared"]
plot(x,y, xlab="bpp omega primate", ylab="bpp omega bats", cex=0.5)
abline(0,1)
abline(lm(y~x), col="red")
text(x[x>0.5 &y<0.4], (y[x>0.5 &y<0.4]+0.01),
names(x)[x>0.5 &y<0.4], cex=0.7)
text(x[x<0.45 &y>0.45], (y[x<0.45 &y>0.45]+0.01),
names(x)[x<0.45 &y>0.45], cex=0.7)
text(x[x>0.45 &y>0.4], (y[x>0.45 &y>0.4]+0.01),
names(x)[x>0.45 &y>0.4], cex=0.7)
\subsection{Mondrian}
<<mondrianbats>>=
library(Mondrian)
monddata<-as.data.frame(tmp$Gene.name)
batstmp<-rowSums(cbind(tmp$bats_codemlM1M2=="Y",
tmp$bats_codemlM7M8=="Y",
tmp$bats_BppM1M2=="Y",
tmp$bats_BppM7M8=="Y",
tmp$bats_BUSTED=="Y"))
primatetmp<-rowSums(cbind(tmp$"dginn.primate_codemlM1M2"=="Y",
tmp$"dginn.primate_codemlM7M8"=="Y",
tmp$"dginn.primate_BppM1M2"=="Y",
tmp$"dginn.primate_BppM7M8"=="Y",
tmp$"dginn.primate_BUSTED"=="Y"))
monddata$bats_dginn3<-ifelse(batstmp>=3, 1,0)
monddata$primate_dginn3<-ifelse(primatetmp>=3, 1,0)
monddata$bats_dginn4<-ifelse(batstmp>=4, 1,0)
monddata$primate_dginn4<-ifelse(primatetmp>=4, 1,0)
mondrian(monddata[,2:3],
labels=c("DGINN bats >3", "DGINN primate >3"))
mondrian(monddata[,4:5],
labels=c("DGINN bats >4", "DGINN primate >4"))
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
@
\subsection{subsetR}
<<subsetbats>>=
library(UpSetR)
upset(monddata, nsets = 4, matrix.color = "#DC267F",
main.bar.color = "#648FFF", sets.bar.color = "#FE6100")
upset(monddata[,1:3], nsets = 2, matrix.color = "#DC267F",
main.bar.color = "#648FFF", sets.bar.color = "#FE6100")
upset(monddata[,c(1,4,5)], nsets = 2, matrix.color = "#DC267F",
main.bar.color = "#648FFF", sets.bar.color = "#FE6100")
@
\section{Which are these genes?}
\subsection{Gene under positive selection in both bats and primates}
4 methods:
<<>>=
monddata[monddata$bats_dginn4==1 & monddata$primate_dginn4==1,]
@
3 methods:
<<>>=
monddata[monddata$bats_dginn3==1 & monddata$primate_dginn3==1,]
@
\subsection{Gene under positive selection only in primates}
4 methods:
<<>>=
monddata[monddata$bats_dginn4==0 & monddata$primate_dginn4==1,]
@
3 methods:
<<t>>=
monddata[monddata$bats_dginn3==0 & monddata$primate_dginn3==1,]
@
\subsection{Gene under positive selection only in bats}
4 methods:
<<>>=
monddata[monddata$bats_dginn4==1 & monddata$primate_dginn4==0,]
@
3 methods:
<<>>=
monddata[monddata$bats_dginn3==1 & monddata$primate_dginn3==0,]
@
\subsection{Figure tableau}
<<tablo>>=
tablo<-as.data.frame(tmp$Gene.name)
tablo$nbats<-batstmp
tablo$nprimates<-primatetmp
plot(NULL, xlim=c(-0.5,5.5), ylim=c(-3,5.5),
xlab="bats", ylab="primates",
main="Genes supported by x,y methods in bats and primates",
bty="n",
xaxt="n", yaxt="n")
text(x=rep(-0.6, 6), y=0:5, 0:5)
text(y=rep(-0.65, 6), x=0:5, 0:5)
sapply(seq(from=-0.5, to=5.5, by=1), function(x){
segments(x0=x, x1=x, y0=-0.5, y1=5.5)
})
sapply(seq(from=-0.5, to=5.5, by=1), function(x){
segments(x0=-0.5, x1=5.5, y0=x, y1=x)
})
for (p in 0:5){
for (b in 0:5){
tmp<-tablo$`tmp$Gene.name`[tablo$nbats==b & tablo$nprimates==p]
text(b,seq(from=(p-0.4), to=(p+0.4), length.out = length(tmp)),
tmp, cex=0.4)
text((b-0.3),seq(from=(p-0.4), to=(p+0.4), length.out = 8),
tmp[1:8], cex=0.4)
text((b+0.3),seq(from=(p-0.4), to=(p+0.4), length.out = (length(tmp)-8)),
tmp[9:length(tmp)], cex=0.4)
}else if (length(tmp)>16){
text(b,p, paste0(length(tmp), " values"))
}
}
}
tmp<-tablo$`tmp$Gene.name`[tablo$nbats==0 & tablo$nprimates==1]
text(-0.4,-1.2, "p=1/n=0", cex=0.6)
tmp<-tablo$`tmp$Gene.name`[tablo$nbats==1 & tablo$nprimates==1]
text(-0.4,-1.7, "p=1/n=1", cex=0.6)
text(seq(from=0.1, to=5.5, length.out = 18),
-1.6,
tmp[1:18],
cex=0.4)
text(seq(from=0.1, to=4.5, length.out = length(tmp)-18),
-1.8,
tmp[19:length(tmp)],
cex=0.4)
tmp<-tablo$`tmp$Gene.name`[tablo$nbats==0 & tablo$nprimates==0]
text(seq(from=0.1, to=5.5, length.out = 17),-2.1, tmp[1:17], cex=0.4)
text(seq(from=0.1, to=5.5, length.out = 17),-2.3, tmp[18:34], cex=0.4)
text(seq(from=0.1, to=5.5, length.out = length(tmp)-34),-2.5, tmp[35:length(tmp)], cex=0.4)
tmp<-tablo$`tmp$Gene.name`[tablo$nbats==2 & tablo$nprimates==0]
text(-0.4,-2.9, "p=0/n=2", cex=0.6)
text(seq(from=0.1, to=5.5, length.out = 18),-2.8, tmp[1:18], cex=0.4)
text(seq(from=0.1, to=1, length.out = length(tmp)-18),-3.0, tmp[19:length(tmp)], cex=0.4)
write.csv(tablo[tablo$nbats>=3,"tmp$Gene.name"], "batssup3.csv",
row.names=FALSE,
quote=FALSE)
write.csv(tablo[tablo$nprimates>=3,"tmp$Gene.name"], "primatessup3.csv",
row.names=FALSE,
quote=FALSE)
write.csv(tablo, "primatesVbats.csv",
row.names=FALSE,
quote=FALSE)
Restreindre ce tableau aux gènes présent dans l'analyse de Krogan.
<<setup, include=FALSE, cache=FALSE, tidy=TRUE>>=
options(tidy=TRUE, width=70)
@
<<>>=
# Reading the Krogan table
tab<-read.delim(paste0(workdir,
fill=T, h=T, dec=",")
dim(tab)
#Adding ACE2 and TMPRSS2
krogan<-c(as.character(tab$merge.Gene), "ACE2", "TMPRSS2")
# The list
length(krogan)
krogan
#In the table, I select line that match the krogan gene name liste
tabloK<-tablo[tablo$`tmp$Gene.name` %in% krogan,]
# How many gene lost?
dim(tablo)
dim(tabloK)
# Les gènes perdus (dans le tableau mais pas dans la liste de Krogan)
sort(tablo$`tmp$Gene.name`[tablo$`tmp$Gene.name` %in% krogan==F])
# Les gènes de Krogan non présent dans cette liste
sort(krogan[krogan %in% tablo$`tmp$Gene.name`==F])
write.csv(tabloK, "primatesVbats_onlykrogan.csv", row.names=FALSE, quote=FALSE)
@
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
\section{Tanglegram}
<<eval=FALSE>>=
#install.packages('dendextend') # stable CRAN version
library(dendextend) # load the package
#install.packages("phytools") # stable CRAN version
library(phytools) # load the package
library(ggraph)
library(igraph)
library(tidyverse)
##
tmp<-tablo[(tablo$nbats!=0 | tablo$nprimates!=0),]
tmp<-head(tablo, 20)
#tmp<-rbind(as.matrix(tmp), c("outgroup", 50, 50))
tmp<-as.data.frame(tmp)
matbats<-hclust(dist(tmp$nbats))
matpri<-hclust(dist(tmp$nprimates))
tmp[order(tmp$nbats),]
dendpri<-as.dendrogram(matpri)
dendbats<-as.dendrogram(matbats)
labels(dendpri)<-as.character(tmp$`tmp$Gene.name`[labels(dendpri)])
labels(dendbats)<-as.character(tmp$`tmp$Gene.name`[labels(dendbats)])
tmp[order(tmp$nprimates, decreasing=FALSE),]$'tmp$Gene.name'-> order
dendpri<-dendextend::rotate(dendpri, order=order)
tmp[order(tmp$nbats, decreasing=FALSE),]$'tmp$Gene.name'-> order
dendbats<-dendextend::rotate(dendbats, order=order)
#### Il faut swapper certains neud de l'arbrese
class(labels(dendpri))
dend12 <- dendlist(dendbats, dendpri)
?png
png("tanglegramm.png", width = 1800, height = 3000)
tanglegram(dend12, columns_width=c(3, 3,3), axes=FALSE,
edge.lwd=0, margin_inner=6,
margin_top=2,
main_left=" bats",
main_right = "primates ",
lwd=0.5,
cex_main=1,
lab.cex=1,
k_labels=6)
dev.off()
tmp
?tanglegram
@