Skip to content
Snippets Groups Projects
Commit b2e0bf10 authored by Carine Rey's avatar Carine Rey
Browse files

update session4

parent 8fcd139c
No related branches found
No related tags found
No related merge requests found
Pipeline #367 passed
---
title: "R.4: data transformation"
author: "Laurent Modolo [laurent.modolo@ens-lyon.fr](mailto:laurent.modolo@ens-lyon.fr), Hélène Polvèche [hpolveche@istem.fr](mailto:hpolveche@istem.fr)"
date: "2021"
date: "2022"
output:
rmdformats::downcute:
self_contain: true
use_bookdown: true
default_style: "light"
lightbox: true
css: "http://perso.ens-lyon.fr/laurent.modolo/R/src/style.css"
css: "../www/style_Rmd.css"
---
```{r include=FALSE}
library(fontawesome)
```
 `r fa(name = "fas fa-house", fill = "grey", height = "1em")`  https://can.gitbiopages.ens-lyon.fr/R_basis/
```{r setup, include=FALSE}
rm(list=ls())
knitr::opts_chunk$set(echo = TRUE)
......@@ -429,7 +435,7 @@ mutate(
- Logical comparisons, `<`, `<=`, `>`, `>=`, `!=`, and `==`
- Ranking: there are a number of ranking functions, but you should start with `min_rank()`. There is also `row_number()`, `dense_rank()`, `percent_rank()`, `cume_dist()`, `ntile()`
## See you in [R#5: Pipping and grouping](http://perso.ens-lyon.fr/laurent.modolo/R/session_5/)
## See you in [R#5: Pipping and grouping](https://can.gitbiopages.ens-lyon.fr/R_basis/session_5/)
......@@ -494,13 +500,13 @@ For the next part, we will use a real data set. Anterior tibial muscle tissue wa
First, we will use the gene count table of these samples, formatted for use in ggplot2 ( `pivot_longer()` [function](https://tidyr.tidyverse.org/reference/pivot_longer.html) ).
Open the csv file using the `read_csv2()` function. The file is located at "http://perso.ens-lyon.fr/laurent.modolo/R/session_4/Expression_matrice_pivot_longer_DEGs_GSE86356.csv".
Open the csv file using the `read_csv2()` function. The file is located at "https://can.gitbiopages.ens-lyon.fr/R_basis/session_4/Expression_matrice_pivot_longer_DEGs_GSE86356.csv".
<details><summary>Solution</summary>
<p>
```{r read_csv1}
expr_DM1 <- read_csv2("http://perso.ens-lyon.fr/laurent.modolo/R/session_4/Expression_matrice_pivot_longer_DEGs_GSE86356.csv")
expr_DM1 <- read_csv2("https://can.gitbiopages.ens-lyon.fr/R_basis/Expression_matrice_pivot_longer_DEGs_GSE86356.csv")
expr_DM1
```
......@@ -577,13 +583,13 @@ ggplot(expr_DM1, aes(samples, Genes, fill= log1p(counts))) +
For this last exercise, we will use the results of the differential gene expression analysis between DM1 vs WT conditions.
Open the csv file using the `read_csv2()` function. The file is located at "http://perso.ens-lyon.fr/laurent.modolo/R/session_4/EWang_Tibialis_DEGs_GRCH37-87_GSE86356.csv".
Open the csv file using the `read_csv2()` function. The file is located at "http://can.gitbiopages.ens-lyon.fr/R_basis/session_4/EWang_Tibialis_DEGs_GRCH37-87_GSE86356.csv".
<details><summary>Solution</summary>
<p>
```{r read_csv2}
tab <- read_csv2("http://perso.ens-lyon.fr/laurent.modolo/R/session_4/EWang_Tibialis_DEGs_GRCH37-87_GSE86356.csv")
tab <- read_csv2("http://can.gitbiopages.ens-lyon.fr/R_basis/session_4/EWang_Tibialis_DEGs_GRCH37-87_GSE86356.csv")
tab
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment