- Logical comparisons, `<`, `<=`, `>`, `>=`, `!=`, and `==`
- Ranking: there are a number of ranking functions, but you should start with `min_rank()`. There is also `row_number()`, `dense_rank()`, `percent_rank()`, `cume_dist()`, `ntile()`
## See you in [R#5: Pipping and grouping](http://perso.ens-lyon.fr/laurent.modolo/R/session_5/)
## See you in [R#5: Pipping and grouping](https://can.gitbiopages.ens-lyon.fr/R_basis/session_5/)
...
...
@@ -494,13 +500,13 @@ For the next part, we will use a real data set. Anterior tibial muscle tissue wa
First, we will use the gene count table of these samples, formatted for use in ggplot2 ( `pivot_longer()` [function](https://tidyr.tidyverse.org/reference/pivot_longer.html) ).
Open the csv file using the `read_csv2()` function. The file is located at "http://perso.ens-lyon.fr/laurent.modolo/R/session_4/Expression_matrice_pivot_longer_DEGs_GSE86356.csv".
Open the csv file using the `read_csv2()` function. The file is located at "https://can.gitbiopages.ens-lyon.fr/R_basis/session_4/Expression_matrice_pivot_longer_DEGs_GSE86356.csv".
For this last exercise, we will use the results of the differential gene expression analysis between DM1 vs WT conditions.
Open the csv file using the `read_csv2()` function. The file is located at "http://perso.ens-lyon.fr/laurent.modolo/R/session_4/EWang_Tibialis_DEGs_GRCH37-87_GSE86356.csv".
Open the csv file using the `read_csv2()` function. The file is located at "http://can.gitbiopages.ens-lyon.fr/R_basis/session_4/EWang_Tibialis_DEGs_GRCH37-87_GSE86356.csv".