Skip to content
Snippets Groups Projects
Commit af9deea5 authored by Arnaud Duvermy's avatar Arnaud Duvermy
Browse files

update readme - add png for simuStep ressources

parent be7ff8ae
No related branches found
No related tags found
No related merge requests found
...@@ -86,18 +86,35 @@ In the realm of RNAseq analysis, various key experimental parameters play a cruc ...@@ -86,18 +86,35 @@ In the realm of RNAseq analysis, various key experimental parameters play a cruc
## Getting started ## Getting started
### Init a design and simulate RNAseq data
``` ```
library('HTRfit') library('HTRfit')
## -- init a design ## -- init a design
input_var_list <- init_variable( name = "varA", mu = 0, sd = 0.29, level = 60) %>% input_var_list <- init_variable( name = "varA", mu = 0, sd = 0.29, level = 2000) %>%
init_variable( name = "varB", mu = 0.27, sd = 0.6, level = 2) %>% init_variable( name = "varB", mu = 0.27, sd = 0.6, level = 2) %>%
add_interaction( between_var = c("varA", "varB"), mu = 0.44, sd = 0.89) add_interaction( between_var = c("varA", "varB"), mu = 0.44, sd = 0.89)
## -- simulate RNAseq data ## -- simulate RNAseq data
mock_data <- mock_rnaseq(input_var_list, mock_data <- mock_rnaseq(input_var_list,
n_genes = 30, n_genes = 30000,
min_replicates = 10, min_replicates = 4,
max_replicates = 10, max_replicates = 4 )
basal_expression = 5 ) ```
The simulation process in HTRfit has been optimized to generate RNAseq counts for 30,000 genes and 4,000 experimental conditions, each replicated 4 times, resulting in a total of 16,000 samples, in less than 5 minutes. However, the object generated by the framework under these conditions can consume a significant amount of RAM, approximately 50 GB. For an equivalent simulation with 6,000 genes, less than a minute and 10 GB of RAM are required.
<div id="bg" align="center">
<img src="./vignettes/figs/simulation_step.png" width="500" height="300">
</div>
### Fit your model
```
## -- prepare data & fit a model with mixed effect ## -- prepare data & fit a model with mixed effect
data2fit = prepareData2fit(countMatrix = mock_data$counts, data2fit = prepareData2fit(countMatrix = mock_data$counts,
metadata = mock_data$metadata, metadata = mock_data$metadata,
...@@ -106,8 +123,12 @@ l_tmb <- fitModelParallel(formula = kij ~ varB + (varB | varA), ...@@ -106,8 +123,12 @@ l_tmb <- fitModelParallel(formula = kij ~ varB + (varB | varA),
data = data2fit, data = data2fit,
group_by = "geneID", group_by = "geneID",
family = glmmTMB::nbinom2(link = "log"), family = glmmTMB::nbinom2(link = "log"),
log_file = "log.txt",
n.cores = 1) n.cores = 1)
```
### Evalutation
```
## -- evaluation ## -- evaluation
resSimu <- simulationReport(mock_data, resSimu <- simulationReport(mock_data,
list_tmb = l_tmb, list_tmb = l_tmb,
......
vignettes/figs/simulation_step.png

203 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment