A straightforward way to use **HTRfit** is to run it on a Virtual Machine (VM) through [Biosphere](https://biosphere.france-bioinformatique.fr/catalogue/). We recommend utilizing a VM that includes RStudio for an integrated development environment (IDE) experience. Biosphere VM resources can also be scaled according to your simulation needs.
**HTRfit** can be installed using the [method A](#method-a).
## HTRfit simulation workflow
In the realm of RNAseq analysis, various key experimental parameters play a crucial role in influencing the statistical power to detect expression changes. Parameters such as sequencing depth, the number of replicates, and others are expected to impact statistical power. To navigate the selection of optimal values for these experimental parameters, we introduce a comprehensive statistical framework known as **HTRfit**, underpinned by computational simulation. Moreover, **HTRfit** offers seamless compatibility with DESeq2 outputs, facilitating a comprehensive evaluation of RNAseq analysis.
*[ Theory behind HTRfit ](https://htrfit-lbmc-yvertlab-vortex-plasticity-mutation-477701eb488dfd9.gitbiopages.ens-lyon.fr/articles/theoryBehindHtrfit.html)