Skip to content
Snippets Groups Projects
Commit 234086ab authored by Arnaud Duvermy's avatar Arnaud Duvermy
Browse files

Merge branch 'v1.0.2' into 'master'

V1.0.2

See merge request aduvermy/HTRfit!2
parents e92c9dc7 3bd3380e
No related branches found
No related tags found
No related merge requests found
Showing
with 65 additions and 49 deletions
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/wrapperdeseq2.R
% Please edit documentation in R/wrapper_dds.R
\name{getSE_df}
\alias{getSE_df}
\title{Extract Standard Error Information from DESeq2 Results}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/simulation2.R
% Please edit documentation in R/simulation.R
\name{getSampleID}
\alias{getSampleID}
\title{getSampleID}
......@@ -15,3 +15,6 @@ A sorted vector of sample IDs
\description{
getSampleID
}
\examples{
getSampleID(init_variable())
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/simulation2.R
% Please edit documentation in R/simulation.R
\name{getSampleMetadata}
\alias{getSampleMetadata}
\title{Get sample metadata}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mock-rnaseq.R
% Please edit documentation in R/mock_rnaseq.R
\name{getValidDispersion}
\alias{getValidDispersion}
\title{Validate and Filter Dispersion Values}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/wrapperdeseq2.R
\name{get_inference}
\alias{get_inference}
% Please edit documentation in R/wrapper_dds.R
\name{get_inference_dds}
\alias{get_inference_dds}
\title{Calculate Inference for Differential Expression Analysis}
\usage{
get_inference(dds_full, lfcThreshold, altHypothesis, correction_method)
get_inference_dds(dds_full, lfcThreshold, altHypothesis, correction_method)
}
\arguments{
\item{dds_full}{A data frame containing DESeq2 results, including estimate and standard error information.}
......@@ -24,7 +24,7 @@ This function calculates inference for differential expression analysis based on
\examples{
\dontrun{
# Example usage of the function
inference_result <- get_inference(dds_full, lfcThreshold = 0.5,
inference_result <- get_inference_dds(dds_full, lfcThreshold = 0.5,
altHypothesis = "greater",
correction_method = "BH")
}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/glance_tmb.R
% Please edit documentation in R/glance_glmmtmb.R
\name{glance_tmb}
\alias{glance_tmb}
\title{Extracts the summary statistics from a list of glmmTMB models.}
\usage{
glance_tmb(l_tmb)
glance_tmb(list_tmb)
}
\arguments{
\item{l_tmb}{A list of glmmTMB models or a unique glmmTMB obj model}
\item{list_tmb}{A list of glmmTMB models or a unique glmmTMB obj model}
}
\value{
A DataFrame with the summary statistics for all the glmmTMB models in the list.
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/evaluationwithmixedeffect.R
% Please edit documentation in R/evaluation_withmixedeffect.R
\name{group_logQij_per_genes_and_labels}
\alias{group_logQij_per_genes_and_labels}
\title{Group log_qij values per genes and labels.}
......
......@@ -4,10 +4,10 @@
\alias{handleAnovaError}
\title{Handle ANOVA Errors}
\usage{
handleAnovaError(l_TMB, group, ...)
handleAnovaError(list_tmb, group, ...)
}
\arguments{
\item{l_TMB}{A list of fitted glmmTMB models.}
\item{list_tmb}{A list of fitted glmmTMB models.}
\item{group}{A character string indicating the group for which ANOVA is calculated.}
......@@ -20,8 +20,8 @@ A data frame containing ANOVA results for the specified group.
This function handles ANOVA errors and warnings during the ANOVA calculation process.
}
\examples{
l_tmb <- fitModelParallel(Sepal.Length ~ Sepal.Width + Petal.Length,
list_tmb <- fitModelParallel(Sepal.Length ~ Sepal.Width + Petal.Length,
data = iris, group_by = "Species", n.cores = 1)
anova_res <- handleAnovaError(l_tmb, "setosa", type = "III")
anova_res <- handleAnovaError(list_tmb, "setosa", type = "III")
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/identityplot.R
% Please edit documentation in R/identity_plot.R
\name{identity_plot}
\alias{identity_plot}
\title{Generate an identity plot}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/evaluationwithmixedeffect.R
% Please edit documentation in R/evaluation_withmixedeffect.R
\name{inferenceToExpected_withMixedEff}
\alias{inferenceToExpected_withMixedEff}
\title{Compare the mixed-effects inference to expected values.}
......
......@@ -22,4 +22,3 @@ data(iris)
formula <- Sepal.Length ~ Sepal.Width + Petal.Length
isValidInput2fit(iris, formula) # Returns TRUE if all required variables are present
}
\keyword{internal}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mock-rnaseq.R
\name{.isDispersionMatrixValid}
\alias{.isDispersionMatrixValid}
% Please edit documentation in R/mock_rnaseq.R
\name{is_dispersionMatrixValid}
\alias{is_dispersionMatrixValid}
\title{Check the validity of the dispersion matrix}
\usage{
.isDispersionMatrixValid(matx_dispersion, matx_bool_replication)
is_dispersionMatrixValid(matx_dispersion, matx_bool_replication)
}
\arguments{
\item{matx_dispersion}{Replication matrix}
......@@ -20,5 +20,5 @@ Checks if the dispersion matrix has the correct dimensions.
\examples{
matx_dispersion <- matrix(1:12, nrow = 3, ncol = 4)
matx_bool_replication <- matrix(TRUE, nrow = 3, ncol = 4)
.isDispersionMatrixValid(matx_dispersion, matx_bool_replication)
is_dispersionMatrixValid(matx_dispersion, matx_bool_replication)
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/evaluationwithmixedeffect.R
% Please edit documentation in R/evaluation_withmixedeffect.R
\name{is_formula_mixedTypeI}
\alias{is_formula_mixedTypeI}
\title{Check if the formula follows a specific type I mixed effect structure.}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/evaluationwithmixedeffect.R
% Please edit documentation in R/evaluation_withmixedeffect.R
\name{is_mixedEffect_inFormula}
\alias{is_mixedEffect_inFormula}
\title{Check if the formula contains a mixed effect structure.}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/datafrommvrnorm_manipulations.R
% Please edit documentation in R/utils.R
\name{is_positive_definite}
\alias{is_positive_definite}
\title{Check if a matrix is positive definite
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/updatefitmodel.R
% Please edit documentation in R/update_fittedmodel.R
\name{launchUpdate}
\alias{launchUpdate}
\title{Launch the update process for a GLMNB model.}
\usage{
launchUpdate(glmnb_obj, formula, ...)
launchUpdate(glmm_obj, formula, ...)
}
\arguments{
\item{glmnb_obj}{A GLMNB object to be updated.}
\item{glmm_obj}{A glmmTMB object to be updated.}
\item{formula}{Formula for the updated GLMNB model.}
......
......@@ -4,10 +4,10 @@
\alias{metrics_plot}
\title{Plot Metrics for Generalized Linear Mixed Models (GLMM)}
\usage{
metrics_plot(l_tmb, focus = NULL)
metrics_plot(list_tmb, focus = NULL)
}
\arguments{
\item{l_tmb}{A list of GLMM objects to extract metrics from.}
\item{list_tmb}{A list of GLMM objects to extract metrics from.}
\item{focus}{A character vector specifying the metrics to focus on. Possible
values include "AIC", "BIC", "logLik", "deviance", "df.resid", and
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/mock-rnaseq.R
% Please edit documentation in R/mock_rnaseq.R
\name{mock_rnaseq}
\alias{mock_rnaseq}
\title{Perform RNA-seq simulation}
......
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/fitmodel.R
\name{.parallel_fit}
\alias{.parallel_fit}
\name{parallel_fit}
\alias{parallel_fit}
\title{Fit models in parallel for each group using mclapply and handle logging.
Uses parallel_fit to fit the models.}
\usage{
.parallel_fit(groups, group_by, formula, data, n.cores = NULL, log_file, ...)
parallel_fit(
groups,
group_by,
formula,
data,
n.cores = NULL,
log_file = paste(tempdir(check = FALSE), "htrfit.log", sep = "/"),
...
)
}
\arguments{
\item{groups}{Vector of unique group values}
......@@ -19,7 +27,7 @@ Uses parallel_fit to fit the models.}
\item{n.cores}{The number of CPU cores to use for parallel processing.
If set to NULL (default), the number of available CPU cores will be automatically detected.}
\item{log_file}{File to write log (default : log.txt)}
\item{log_file}{File to write log (default : Rtmpdir/htrfit.log)}
\item{...}{Additional arguments to be passed to the glmmTMB::glmmTMB function}
}
......@@ -31,7 +39,7 @@ Fit models in parallel for each group using mclapply and handle logging.
Uses parallel_fit to fit the models.
}
\examples{
.parallel_fit(group_by = "Species", "setosa",
parallel_fit(group_by = "Species", "setosa",
formula = Sepal.Length ~ Sepal.Width + Petal.Length,
data = iris, n.cores = 1, log_file = "log.txt" )
data = iris, n.cores = 1 )
}
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/updatefitmodel.R
\name{.parallel_update}
\alias{.parallel_update}
\title{Internal function to fit GLMNB models in parallel.}
% Please edit documentation in R/update_fittedmodel.R
\name{parallel_update}
\alias{parallel_update}
\title{Internal function to fit glmmTMB models in parallel.}
\usage{
.parallel_update(formula, l_tmb, n.cores = NULL, log_file = "log.txt", ...)
parallel_update(
formula,
list_tmb,
n.cores = NULL,
log_file = paste(tempdir(check = FALSE), "htrfit.log", sep = "/"),
...
)
}
\arguments{
\item{formula}{Formula for the GLMNB model.}
\item{l_tmb}{List of GLMNB objects.}
\item{list_tmb}{List of glmmTMB objects.}
\item{n.cores}{Number of cores to use for parallel processing.}
\item{log_file}{File path for the log output.}
\item{log_file}{File path for the log output (default : Rtmpdir/htrfit.log).}
\item{...}{Additional arguments to be passed to the glmmTMB::glmmTMB function.}
}
......@@ -21,7 +27,7 @@
A list of updated GLMNB models.
}
\description{
This function is used internally by \code{\link{updateParallel}} to fit GLMNB models in parallel.
This function is used internally by \code{\link{updateParallel}} to fit glmmTMB models in parallel.
}
\examples{
data(iris)
......@@ -30,5 +36,5 @@ group_by <- "Species"
formula <- Sepal.Length ~ Sepal.Width + Petal.Length
fitted_models <- fitModelParallel(formula, iris, group_by, n.cores = 1)
new_formula <- Sepal.Length ~ Sepal.Width
results <- .parallel_update(new_formula, fitted_models, n.cores = 1)
results <- parallel_update(new_formula, fitted_models, n.cores = 1)
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment