Select Git revision
simulation.R
Arnaud Duvermy authored
simulation.R 12.53 KiB
# WARNING - Generated by {fusen} from dev/flat_full.Rmd: do not edit by hand
#' Get input for simulation based on coefficients
#'
#' This function generates input data for simulation based on the coefficients provided in the \code{list_var} argument.
#'
#' @param list_var A list of variables (already initialized)
#' @param n_genes Number of genes to simulate (default: 1)
#' @param input2mvrnorm Input to the \code{mvrnorm} function for simulating data from multivariate normal distribution (default: NULL)
#' @return A data frame with input coefficients for simulation
#' @export
#' @examples
#' # Example usage
#' list_var <- init_variable()
#' getInput2simulation(list_var, n_genes = 10)
getInput2simulation <- function(list_var, n_genes = 1, input2mvrnorm = NULL) {
# Use default input to mvrnorm if not provided by the user
if (is.null(input2mvrnorm)) input2mvrnorm = getInput2mvrnorm(list_var)
l_dataFromMvrnorm = getDataFromMvrnorm(list_var, input2mvrnorm, n_genes)
l_dataFromUser = getDataFromUser(list_var)
df_input2simu <- getCoefficients(list_var, l_dataFromMvrnorm, l_dataFromUser, n_genes)
return(df_input2simu)
}
#' getCoefficients
#'
#' Get the coefficients.
#'
#' @param list_var A list of variables (already initialized)
#' @param l_dataFromMvrnorm Data from the `getGeneMetadata` function (optional).
#' @param l_dataFromUser Data from the `getDataFromUser` function (optional).
#' @param n_genes The number of genes.
#' @export
#' @return A dataframe containing the coefficients.
#' @examples
#' # Example usage
#' list_var <- init_variable()
#' input2mvrnorm = getInput2mvrnorm(list_var)
#' l_dataFromMvrnorm = getDataFromMvrnorm(list_var, input2mvrnorm, n_genes)
#' l_dataFromUser = getDataFromUser(list_var)
#' getCoefficients(list_var, l_dataFromMvrnorm, l_dataFromUser, n_genes = 3)
getCoefficients <- function(list_var, l_dataFromMvrnorm, l_dataFromUser, n_genes) {
if (length(l_dataFromMvrnorm) == 0) {
metaData <- getGeneMetadata(list_var, n_genes)
l_dataFromMvrnorm <- list(metaData)
}
l_df2join <- c(l_dataFromMvrnorm, l_dataFromUser)
df_coef <- Reduce(function(d1, d2){ column_names = colnames(d2)
idx_key = grepl(pattern = "label", column_names )
keys = column_names[idx_key]
join_dtf(d1, d2, k1 = keys , k2 = keys)
}
, l_df2join ) %>% as.data.frame()
column_names <- colnames(df_coef)
idx_column2factor <- grep(pattern = "label_", column_names)
if (length(idx_column2factor) > 1) {
df_coef[, idx_column2factor] <- lapply(df_coef[, idx_column2factor], as.factor)
} else {
df_coef[, idx_column2factor] <- as.factor(df_coef[, idx_column2factor])
}
return(df_coef)
}
#' Get the log_qij values from the coefficient data frame.
#'
#' @param dtf_coef The coefficient data frame.
#' @return The coefficient data frame with log_qij column added.
#' @export
#' @examples
#' list_var <- init_variable()
#' dtf_coef <- getInput2simulation(list_var, 10)
#' dtf_coef <- getLog_qij(dtf_coef)
getLog_qij <- function(dtf_coef) {
dtf_beta_numeric <- dtf_coef[sapply(dtf_coef, is.numeric)]
dtf_coef$log_qij <- rowSums(dtf_beta_numeric, na.rm = TRUE)
return(dtf_coef)
}
#' Calculate mu_ij values based on coefficient data frame and scaling factor
#'
#' This function calculates mu_ij values by raising 2 to the power of the log_qij values
#' from the coefficient data frame and multiplying it by the provided scaling factor.
#'
#' @param dtf_coef Coefficient data frame containing the log_qij values
#'
#' @return Coefficient data frame with an additional mu_ij column
#'
#' @examples
#' list_var <- init_variable()
#' dtf_coef <- getInput2simulation(list_var, 10)
#' dtf_coef <- getLog_qij(dtf_coef)
#' dtf_coef <- addBasalExpression(dtf_coef, 10, c(10, 20, 0))
#' getMu_ij(dtf_coef)
#' @export
getMu_ij <- function(dtf_coef) {
log_qij_scaled <- dtf_coef$log_qij + dtf_coef$basalExpr
dtf_coef$log_qij_scaled <- log_qij_scaled
mu_ij <- exp(log_qij_scaled)
dtf_coef$mu_ij <- mu_ij
return(dtf_coef)
}
#' getMu_ij_matrix
#'
#' Get the Mu_ij matrix.
#'
#' @param dtf_coef A dataframe containing the coefficients.
#' @importFrom reshape2 dcast
#' @importFrom stats as.formula
#' @export
#' @return A Mu_ij matrix.
#' @examples
#' list_var <- init_variable()
#' dtf_coef <- getInput2simulation(list_var, 10)
#' dtf_coef <- getLog_qij(dtf_coef)
#' dtf_coef <- addBasalExpression(dtf_coef, 10, c(10, 20, 0))
#' dtf_coef<- getMu_ij(dtf_coef)
#' getMu_ij_matrix(dtf_coef)
getMu_ij_matrix <- function(dtf_coef) {
column_names <- colnames(dtf_coef)
idx_var <- grepl(pattern = "label", column_names)
l_var <- column_names[idx_var]
str_formula_rigth <- paste(l_var, collapse = " + ")
if (str_formula_rigth == "") stop("no variable label detected")
str_formula <- paste(c("geneID", str_formula_rigth), collapse = " ~ ")
formula <- stats::as.formula(str_formula)
dtf_Muij <- dtf_coef %>% reshape2::dcast(formula = formula, value.var = "mu_ij", drop = F)
dtf_Muij[is.na(dtf_Muij)] <- 0
mtx_Muij <- data.frame(dtf_Muij[, -1], row.names = dtf_Muij[, 1]) %>% as.matrix()
mtx_Muij <- mtx_Muij[, order(colnames(mtx_Muij)), drop = F]
return(mtx_Muij)
}
#' getSubCountsTable
#'
#' Get the subcounts table.
#'
#' @param matx_Muij The Mu_ij matrix.
#' @param matx_dispersion The dispersion matrix.
#' @param replicateID The replication identifier.
#' @param l_bool_replication A boolean vector indicating the replicates.
#' @importFrom stats rnbinom
#'
#' @return A subcounts table.
getSubCountsTable <- function(matx_Muij, matx_dispersion, replicateID, l_bool_replication) {
getKijMatrix <- function(matx_Muij, matx_dispersion, n_genes, n_samples) {
k_ij <- stats::rnbinom(n_genes * n_samples,
size = matx_dispersion,
mu = matx_Muij) %>%
matrix(nrow = n_genes, ncol = n_samples)
k_ij[is.na(k_ij)] <- 0
return(k_ij)
}
if (!any(l_bool_replication))
return(NULL)
matx_Muij <- matx_Muij[, l_bool_replication, drop = FALSE]
matx_dispersion <- matx_dispersion[, l_bool_replication, drop = FALSE]
l_sampleID <- colnames(matx_Muij)
l_geneID <- rownames(matx_Muij)
dimension_mtx <- dim(matx_Muij)
n_genes <- dimension_mtx[1]
n_samples <- dimension_mtx[2]
matx_kij <- getKijMatrix(matx_Muij, matx_dispersion, n_genes, n_samples)
colnames(matx_kij) <- paste(l_sampleID, replicateID, sep = "_")
rownames(matx_kij) <- l_geneID
return(matx_kij)
}
#' getReplicationMatrix
#'
#' @param minN Minimum number of replicates for each sample
#' @param maxN Maximum number of replicates for each sample
#' @param n_samples Number of samples
#' @export
#' @return A replication matrix indicating which samples are replicated
getReplicationMatrix <- function(minN, maxN, n_samples) {
# Create a list of logical vectors representing the minimum number of replicates
l_replication_minimum = lapply(1:n_samples,
FUN = function(i) rep(TRUE, times = minN) )
# Create a list of random logical vectors representing additional replicates
l_replication_random = lapply(1:n_samples,
FUN = function(i) sample(x = c(TRUE, FALSE), size = maxN-minN, replace = T) )
# Combine the replication vectors into matrices
matx_replication_minimum <- do.call(cbind, l_replication_minimum)
matx_replication_random <- do.call(cbind, l_replication_random)
# Combine the minimum replicates and random replicates into a single matrix
matx_replication <- rbind(matx_replication_minimum, matx_replication_random)
# Sort the columns of the replication matrix in descending order
matx_replication = apply(matx_replication, 2, sort, decreasing = TRUE ) %>% matrix(nrow = maxN)
return(matx_replication)
}
#' getCountsTable
#'
#' @param matx_Muij Matrix of mean expression values for each gene and sample
#' @param matx_dispersion Matrix of dispersion values for each gene and sample
#' @param matx_bool_replication Replication matrix indicating which samples are replicated
#'
#' @return A counts table containing simulated read counts for each gene and sample
getCountsTable <- function(matx_Muij , matx_dispersion, matx_bool_replication ){
max_replicates <- dim(matx_bool_replication)[1]
# Apply the getSubCountsTable function to each row of the replication matrix
l_countsTable = lapply(1:max_replicates, function(i) getSubCountsTable(matx_Muij , matx_dispersion, i, matx_bool_replication[i,] ))
# Combine the counts tables into a single matrix
countsTable = do.call(cbind, l_countsTable)
return(countsTable %>% as.data.frame())
}
#' getDispersionMatrix
#'
#' @param list_var A list of variables (already initialized)
#' @param n_genes Number of genes
#' @param dispersion Vector of dispersion values for each gene
#' @export
#'
#' @return A matrix of dispersion values for each gene and sample
getDispersionMatrix <- function(list_var, n_genes, dispersion = stats::runif(n_genes, min = 0, max = 1000)){
l_geneID = paste("gene", 1:n_genes, sep = "")
l_sampleID = getSampleID(list_var)
n_samples = length(l_sampleID)
l_dispersion <- dispersion
# Create a data frame for the dispersion values
dtf_dispersion = list(dispersion = l_dispersion) %>% as.data.frame()
dtf_dispersion <- dtf_dispersion[, rep("dispersion", n_samples)]
rownames(dtf_dispersion) = l_geneID
colnames(dtf_dispersion) = l_sampleID
matx_dispersion = dtf_dispersion %>% as.matrix()
return(matx_dispersion)
}
#' Replicate rows of a data frame by group
#'
#' Replicates the rows of a data frame based on a grouping variable and replication counts for each group.
#'
#' @param df Data frame to replicate
#' @param group_var Name of the grouping variable in the data frame
#' @param rep_list Vector of replication counts for each group
#' @return Data frame with replicated rows
#' @examples
#' df <- data.frame(group = c("A", "B"), value = c(1, 2))
#' replicateByGroup(df, "group", c(2, 3))
#'
#' @export
replicateByGroup <- function(df, group_var, rep_list) {
l_group_var <- df[[group_var]]
group_levels <- unique(l_group_var)
names(rep_list) <- group_levels
group_indices <- rep_list[l_group_var]
replicated_indices <- rep(seq_len(nrow(df)), times = group_indices)
replicated_df <- df[replicated_indices, ]
suffix_sampleID <- sequence(group_indices)
replicated_df[["sampleID"]] <- paste(replicated_df[["sampleID"]], suffix_sampleID, sep = "_")
rownames(replicated_df) <- NULL
return(replicated_df)
}
#' Replicate rows of a data frame
#'
#' Replicates the rows of a data frame by a specified factor.
#'
#' @param df Data frame to replicate
#' @param n Replication factor for each row
#' @return Data frame with replicated rows
#' @export
#' @examples
#' df <- data.frame(a = 1:3, b = letters[1:3])
#' replicateRows(df, 2)
#'
replicateRows <- function(df, n) {
indices <- rep(seq_len(nrow(df)), each = n)
replicated_df <- df[indices, , drop = FALSE]
rownames(replicated_df) <- NULL
return(replicated_df)
}
#' Get sample metadata
#'
#' Generates sample metadata based on the input variables, replication matrix, and number of genes.
#'
#' @param list_var A list of variables (already initialized)
#' @param replicationMatrix Replication matrix
#' @param n_genes Number of genes
#' @return Data frame of sample metadata
#' @importFrom data.table setorderv
#' @export
#' @examples
#' list_var <- init_variable()
#' n_genes <- 10
#' replicationMatrix <- generateReplicationMatrix(list_var ,2, 3)
#' getSampleMetadata(list_var, n_genes, replicationMatrix)
getSampleMetadata <- function(list_var, n_genes, replicationMatrix) {
l_sampleIDs = getSampleID(list_var)
metaData <- generateGridCombination_fromListVar(list_var)
metaData[] <- lapply(metaData, as.character) ## before reordering
data.table::setorderv(metaData, cols = colnames(metaData))
metaData[] <- lapply(metaData, as.factor)
metaData$sampleID <- l_sampleIDs
rep_list <- colSums(replicationMatrix)
metaData$sampleID <- as.character(metaData$sampleID) ## before replicating
sampleMetadata <- replicateByGroup(metaData, "sampleID", rep_list)
colnames(sampleMetadata) <- gsub("label_", "", colnames(sampleMetadata))
return(sampleMetadata)
}
#' getSampleID
#'
#' @param list_var A list of variables (already initialized)
#' @export
#' @return A sorted vector of sample IDs
#' @examples
#' getSampleID(init_variable())
getSampleID <- function(list_var){
gridCombination <- generateGridCombination_fromListVar(list_var)
l_sampleID <- apply( gridCombination , 1 , paste , collapse = "_" ) %>% unname()
return(sort(l_sampleID))
}