Newer
Older
title: "Benchmarking HTRfit and DESeq2"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Benchmarking HTRfit and DESeq2}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup, warning = FALSE, message = FALSE, results='hide'}
library(HTRfit)
library(DESeq2)
```
HTRfit offers a wrapper for DESeq2 outputs. This functionality allows users to seamlessly integrate the results obtained from DESeq2 into the HTRfit evaluation pipeline. By doing so, you can readily compare the performance of HTRfit with DESeq2 on your RNAseq data. This comparative analysis aids in determining which tool performs better for your specific research goals and dataset
## Simulation
```{r design_init, warning = FALSE, message = FALSE}
## -- init a design
list_var <- init_variable( name = "genotype", mu = 0, sd = 0.29, level = 2) %>%
init_variable( name = "environment", mu = 0.27, sd = 0.6, level = 4) %>%
add_interaction( between_var = c("genotype", "environment"), mu = 0.44, sd = 0.89)
N_GENES <- 100
MIN_REPLICATES <- 4
MAX_REPLICATES <- 4
SEQ_DEPTH <- 5e6
## -- simulate RNAseq data
n_genes = N_GENES,
min_replicates = MIN_REPLICATES,
max_replicates = MAX_REPLICATES,
basal_expression = 2,
sequencing_depth = SEQ_DEPTH)
```
## Fit models
```{r data2fit, warning = FALSE, message = FALSE, results = 'hide'}
## -- data from simulation or real data
count_matrix <- mock_data$counts
metaData <- mock_data$metadata
```
#### HTRfit
```{r prepareData_and_fit, warning = FALSE, message = FALSE}
## -- convert counts matrix and samples metadatas in a data frame for fitting
data2fit = prepareData2fit(countMatrix = count_matrix,
metadata = metaData,
normalization = 'MRN',
response_name = "kij")
l_tmb <- fitModelParallel(
formula = kij ~ genotype + environment + genotype:environment,
data = data2fit,
group_by = "geneID",
family = glmmTMB::nbinom2(link = "log"),
n.cores = 1)
```
#### DESeq2
```{r fit_dds, warning = FALSE, message = FALSE, results = 'hide'}
## -- DESeq2
dds <- DESeq2::DESeqDataSetFromMatrix(
countData = count_matrix,
colData = metaData,
design = ~ genotype + environment + genotype:environment )
dds <- DESeq2::DESeq(dds, quiet = TRUE)
```
## Evaluation
```{r example-ddsComparison, warning = FALSE, message = FALSE}
## -- get simulation/fit evaluation
resSimu <- evaluation_report(list_tmb = l_tmb,
dds = dds,
mock_obj = mock_data,
coeff_threshold = 0.4,
alt_hypothesis = "greaterAbs")
```
```{r example-outputResSimu_id, warning = FALSE, message = FALSE, fig.align = 'center', fig.height = 4, fig.width = 5}
resSimu$identity$params
resSimu$identity$dispersion
```
```{r example-outputResSimu_metric, warning = FALSE, message = FALSE, fig.align = 'center', fig.height = 4, fig.width = 7}
## -- precision-recall curve
resSimu$precision_recall$params
## -- ROC curve
resSimu$roc$params
## -- Performances metrics
resSimu$performances
```