Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TDD_MAPKi
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LBMC
ReGArDS
TDD_MAPKi
Commits
ac8f615b
Commit
ac8f615b
authored
Jun 22, 2022
by
nfontrod
Browse files
Options
Downloads
Patches
Plain Diff
src/03_ERCC_analysis_function.R: linter changes
parent
5fff23d3
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/03_ERCC_analysis_function.R
+37
-14
37 additions, 14 deletions
src/03_ERCC_analysis_function.R
with
37 additions
and
14 deletions
src/03_ERCC_analysis_function.R
+
37
−
14
View file @
ac8f615b
...
...
@@ -56,7 +56,9 @@ get_count_matrix <- function(directory, condition_pattern, selection_vec = "",
dds
<-
DESeq
(
dds_input
)
# nolint
cts
<-
counts
(
dds
,
norm
=
F
)
# nolint
if
(
filtering_transcript
)
{
coding_gene
<-
read_tsv
(
"results/coding_genes/coding_gene.txt"
)
$
gene_id
coding_gene
<-
read_tsv
(
"results/coding_genes/coding_gene.txt"
)
$
gene_id
# nolint
cts
<-
cts
[
which
(
rownames
(
cts
)
%in%
coding_gene
),
]
}
if
(
read_number_filter
>
0
)
{
...
...
@@ -64,7 +66,7 @@ get_count_matrix <- function(directory, condition_pattern, selection_vec = "",
sample_size
<-
cts
%>%
as_tibble
()
%>%
summarise_if
(
is.numeric
,
sum
)
cts
<-
cts
[,
colnames
(
cts
)[(
sample_size
>
5e6
)]]
cts
<-
cts
[,
colnames
(
cts
)[(
sample_size
>
read_number_filter
)]]
}
return
(
cts
)
}
...
...
@@ -89,15 +91,19 @@ get_relative_count <- function(data_count, ercc_count) {
by
=
c
(
"name"
,
"samples"
),
suffix
=
c
(
""
,
"_ercc"
)
)
res
<-
res
%>%
mutate
(
relative_count
=
counts_ercc
/
counts
)
res
<-
res
%>%
mutate
(
relative_count
=
counts_ercc
/
counts
)
# nolint
return
(
res
)
}
#' get ERCC correlation plot for one sample
#'
#' @param ercc_raw a dataframe containing raw ERCC count
#' @param col The selected sample for which we want to display the correlation figure
#' @param size_list a named vector containing the number of reads in coding gene for each samples
#' @param col The selected sample for which we want to display
#' the correlation figure
#' @param size_list a named vector containing the number of reads
#' in coding gene for each samples
create_ercc_correlation_plots
<-
function
(
ercc_raw
,
col
,
size_list
)
{
selected
<-
which
(
ercc_raw
[[
col
]]
>
0
&
ercc_raw
$
concentration
>
0
)
size
<-
size_list
[
col
]
...
...
@@ -105,9 +111,15 @@ create_ercc_correlation_plots <- function(ercc_raw, col, size_list) {
colc
<-
ercc_raw
$
concentration
[
selected
]
cor_val
<-
cor.test
(
log2
(
colc
),
log2
(
coli
))
$
estimate
ercc
<-
nrow
(
ercc_raw
)
p
<-
ggplot
(
ercc_raw
,
mapping
=
aes
(
x
=
log2
(
concentration
),
y
=
log2
(
!!
as.symbol
(
col
))))
+
p
<-
ggplot
(
ercc_raw
,
mapping
=
aes
(
x
=
log2
(
concentration
),
y
=
log2
(
!!
as.symbol
(
col
))
))
+
geom_point
()
+
ggtitle
(
paste
(
"R = "
,
round
(
cor_val
,
3
),
"- n ="
,
ercc
,
"- s = "
,
round
(
size
/
1e6
,
1
),
"M"
))
+
ggtitle
(
paste
(
"R = "
,
round
(
cor_val
,
3
),
"- n ="
,
ercc
,
"- s = "
,
round
(
size
/
1e6
,
1
),
"M"
))
+
stat_smooth
(
method
=
"lm"
,
se
=
FALSE
,
color
=
"red"
)
p
$
my_cor
<-
cor_val
return
(
p
)
...
...
@@ -116,29 +128,40 @@ create_ercc_correlation_plots <- function(ercc_raw, col, size_list) {
#' Create ERCC correlation figure for all samples
#'
#' @param ercc_count_matrix The ercc count matrix
#' @param count_threshold The average count threshold an ercc must have to be displayed in the figure
#' @param count_threshold The average count threshold an ercc must have
#' to be displayed in the figure
#' @import tidyverse
create_correlation_figures
<-
function
(
ercc_count_matrix
,
count_threshold
)
{
ercc_raw
<-
ercc_count_matrix
ercc_raw
<-
as_tibble
(
data.frame
(
gene
=
rownames
(
ercc_count_matrix
),
ercc_raw
))
ercc_raw
<-
ercc_raw
%>%
left_join
(
ercc_real_concentration
,
by
=
"gene"
)
ercc_raw
<-
as_tibble
(
data.frame
(
gene
=
rownames
(
ercc_count_matrix
),
ercc_raw
))
# nolint
ercc_raw
<-
ercc_raw
%>%
left_join
(
ercc_real_concentration
,
by
=
"gene"
)
# nolint
ercc_raw2
<-
ercc_raw
%>%
select
(
-
concentration
)
%>%
pivot_longer
(
-
gene
,
names_to
=
"sample"
,
values_to
=
"counts"
)
%>%
group_by
(
gene
)
%>%
summarise
(
min_count
=
mean
(
counts
))
ercc_raw
<-
left_join
(
ercc_raw
,
ercc_raw2
,
by
=
"gene"
)
%>%
filter
(
min_count
>
count_threshold
)
ercc_raw
<-
left_join
(
ercc_raw
,
ercc_raw2
,
by
=
"gene"
)
%>%
filter
(
min_count
>
count_threshold
)
# nolint
sample_size
<-
apply
(
data_count_matrix
%>%
as_tibble
()
%>%
select
(
-
gene
),
2
,
sum
)
sample_size
<-
apply
(
data_count_matrix
%>%
as_tibble
()
%>%
select
(
-
gene
),
2
,
sum
)
# nolint
names_c
<-
ercc_raw
%>%
select
(
-
gene
,
-
concentration
,
-
min_count
)
%>%
colnames
()
sum
(
names
(
sample_size
)
==
names_c
)
# 96 they are in the same order
my_plots
<-
lapply
(
names_c
,
create_ercc_correlation_plots
,
ercc_raw
=
ercc_raw
,
size_list
=
sample_size
)
my_plots
<-
lapply
(
names_c
,
create_ercc_correlation_plots
,
ercc_raw
=
ercc_raw
,
size_list
=
sample_size
)
# nolint
correlation_sup20
<-
sapply
(
my_plots
,
function
(
x
)
{
return
(
x
$
my_cor
)
})
dir.create
(
"./results/ERCC_analysis"
)
pdf
(
paste0
(
"./results/ERCC_analysis/correlations_ERCC-meancount>"
,
count_threshold
,
"_quant_vs_concentration.pdf"
),
width
=
12
,
height
=
100
)
pdf
(
paste0
(
"./results/ERCC_analysis/correlations_ERCC-meancount>"
,
count_threshold
,
"_quant_vs_concentration.pdf"
),
width
=
12
,
height
=
100
)
print
(
do.call
(
"grid.arrange"
,
c
(
my_plots
,
ncol
=
3
)))
dev.off
()
return
(
correlation_sup20
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment