Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TDD_MAPKi
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LBMC
ReGArDS
TDD_MAPKi
Commits
a44d47ca
Commit
a44d47ca
authored
2 years ago
by
nfontrod
Browse files
Options
Downloads
Patches
Plain Diff
src/05_DESEQ2_normalisation.R: create correlation figure for t3
parent
dc8893c8
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/05_DESEQ2_normalisation.R
+54
-37
54 additions, 37 deletions
src/05_DESEQ2_normalisation.R
with
54 additions
and
37 deletions
src/05_DESEQ2_normalisation.R
+
54
−
37
View file @
a44d47ca
...
...
@@ -28,6 +28,10 @@ load_n_filter_data <- function(sample_threshold = 5e6, gene_threshold = 10,
c
(
1
,
grep
(
pattern
,
colnames
(
full_data
),
value
=
F
,
perl
=
T
))
]
}
coding_gene
<-
read_tsv
(
"results/coding_genes/coding_gene.txt"
)
$
gene_id
# nolint
full_data
<-
full_data
[
full_data
$
gene
%in%
coding_gene
,
]
if
(
sample_threshold
>
0
)
{
# filter by read number
sample_size
<-
full_data
%>%
...
...
@@ -43,17 +47,15 @@ load_n_filter_data <- function(sample_threshold = 5e6, gene_threshold = 10,
"./results/matrice_count/ercc_matrices.txt"
)
# nolint
ercc_data
<-
ercc_data
[,
colnames
(
full_data
)]
if
(
gene_threshold
>
0
)
{
ercc_data
$
rmean
<-
ercc_data
%>%
select
(
-
gene
)
%>%
apply
(
1
,
mean
)
# nolint
ercc_data
<-
ercc_data
%>%
filter
(
rmean
>=
gene_threshold
)
# nolint
ercc_data
<-
ercc_data
%>%
select
(
-
rmean
)
# nolint
}
full_data
<-
rbind
(
full_data
,
ercc_data
)
}
if
(
gene_threshold
>
0
)
{
full_data
$
rmean
<-
full_data
%>%
select
(
-
gene
)
%>%
apply
(
1
,
mean
)
# nolint
full_data
<-
full_data
%>%
filter
(
rmean
>=
gene_threshold
)
# nolint
full_data
<-
full_data
%>%
select
(
-
rmean
)
# nolint
}
if
(
load_ercc
)
{
ercc_gene
<-
full_data
%>%
ercc_gene
<-
ercc_data
%>%
filter
(
startsWith
(
gene
,
"ERCC-"
))
%>%
select
(
gene
)
%>%
unlist
()
%>%
...
...
@@ -111,8 +113,9 @@ normalise_matrix <- function(stable_vector, count_tibble) {
#' @param output_f Folder where the figures will be created
#' @param output_file The name of the file that will be created
#' @param color_col The column to use to color the dots
#' @param time_step The time step of interest
create_correlation
<-
function
(
norm_table
,
treatment
,
output_f
,
output_file
,
color_col
=
"stable"
)
{
color_col
=
"stable"
,
time_step
=
5
)
{
dir.create
(
output_f
,
showWarnings
=
F
)
if
(
color_col
==
"stable"
)
{
my_colors
<-
c
(
"dimgrey"
,
"red"
)
...
...
@@ -127,15 +130,16 @@ create_correlation <- function(norm_table, treatment, output_f, output_file,
)
}
sg
<-
sum
(
norm_table
$
stable
)
coly
<-
paste0
(
"T_"
,
time_step
)
p
<-
ggplot
(
norm_table
,
mapping
=
aes
(
x
=
log10
(
`T_0`
),
y
=
log10
(
`T_5`
),
x
=
log10
(
`T_0`
),
y
=
log10
(
!!
as.symbol
(
coly
)
),
color
=
!!
as.symbol
(
color_col
)
))
+
scale_color_manual
(
values
=
my_colors
)
+
geom_abline
(
slope
=
1
,
color
=
"blue"
,
size
=
2
)
+
geom_point
()
+
ggtitle
(
paste0
(
"Correlation between 0h vs
5
h of cells"
,
"Correlation between 0h vs
"
,
time_step
,
"
h of cells"
,
"treated with triptolite and "
,
treatment
,
" ("
,
sg
,
" stable genes)"
))
...
...
@@ -157,7 +161,6 @@ create_correlation <- function(norm_table, treatment, output_f, output_file,
#' @param colors The colors of groups of genes
create_expression_boxplot
<-
function
(
norm_table
,
treatment
,
output_f
,
output_file
,
my_colors
)
{
message
(
my_colors
)
new_table
<-
norm_table
%>%
pivot_longer
(
c
(
-
gene
,
-
stable
,
-
group
),
names_to
=
"condition"
,
...
...
@@ -188,9 +191,11 @@ create_expression_boxplot <- function(norm_table, treatment, output_f,
#' @param output_file File that will contain the correlation figure
#' @param stable_file A file containing stable genes
#' @param output_f The folder were the results will be created
#' @param time_step The time step of interest
#' @import tidyverse
get_mean_correleation_figure
<-
function
(
norm_matrix
,
output_file
,
stable_file
,
treatment
,
output_f
)
{
get_mean_correlation_figure
<-
function
(
norm_matrix
,
output_file
,
stable_file
,
treatment
,
output_f
,
time_step
)
{
res
<-
norm_matrix
%>%
as_tibble
()
%>%
pivot_longer
(
-
gene
,
values_to
=
"counts"
,
names_to
=
"sample"
)
%>%
...
...
@@ -208,8 +213,14 @@ get_mean_correleation_figure <- function(norm_matrix, output_file,
mutate
(
stable
=
gene
%in%
stable_gene
)
%>%
arrange
(
stable
)
# nolint
res
<-
get_group_columns
(
res
)
# nolint
create_correlation
(
res
,
treatment
,
output_f
,
output_file
,
"stable"
)
create_correlation
(
res
,
treatment
,
output_f
,
output_file
,
"group"
)
create_correlation
(
res
,
treatment
,
output_f
,
output_file
,
"stable"
,
time_step
)
create_correlation
(
res
,
treatment
,
output_f
,
output_file
,
"group"
,
time_step
)
}
...
...
@@ -228,13 +239,16 @@ normalize_on_stable_gene <- function(count_threshold = 5e6,
"results/deseq2_normalisation"
)
{
my_pattern
<-
paste0
(
treatment
,
"_T*_0|"
,
treatment
,
"_T*_5|"
,
treatment
,
"_DMSO_0|"
,
treatment
,
"_TCHX_5"
treatment
,
"_T*_5|"
,
treatment
,
"_DMSO_0|"
,
treatment
,
"_TCHX_5|"
,
treatment
,
"_T*_3|"
,
treatment
,
"_TCHX_3"
)
full_data
<-
load_n_filter_data
(
sample_threshold
=
count_threshold
,
pattern
=
my_pattern
,
gene_threshold
=
0
,
gene_threshold
=
1
0
,
load_ercc
=
use_ercc
)
if
(
treatment
==
"BRAF"
)
{
...
...
@@ -255,19 +269,22 @@ normalize_on_stable_gene <- function(count_threshold = 5e6,
if
(
use_ercc
)
{
name_ercc
<-
"_ercc"
}
fig_name
<-
paste0
(
treatment
,
name_ercc
,
"_T0_vs_T5_mean"
)
norm_table
<-
data.frame
(
gene
=
rownames
(
norm_counts
),
norm_counts
)
get_mean_correleation_figure
(
norm_table
,
fig_name
,
stable_file
,
treatment
,
output_f
=
output_folder
)
write_tsv
(
norm_table
,
file
=
paste0
(
output_folder
,
"/"
,
treatment
,
name_ercc
,
"_norm_stable_gene.txt"
for
(
ts
in
c
(
"3"
,
"5"
))
{
fig_name
<-
paste0
(
treatment
,
name_ercc
,
"_T0_vs_T"
,
ts
,
"_mean"
)
norm_table
<-
data.frame
(
gene
=
rownames
(
norm_counts
),
norm_counts
)
get_mean_correlation_figure
(
norm_table
,
fig_name
,
stable_file
,
treatment
,
output_f
=
output_folder
,
time_step
=
ts
)
)
write_tsv
(
norm_table
,
file
=
paste0
(
output_folder
,
"/"
,
treatment
,
name_ercc
,
"_norm_stable_gene.txt"
)
)
}
}
...
...
@@ -276,20 +293,20 @@ normalize_on_stable_gene <- function(count_threshold = 5e6,
#' @param output_folder Folder where the results will be created
grep_normalise_conditions
<-
function
(
output_folder
=
"results/deseq2_normalisation"
)
{
normalize_on_stable_gene
(
count_threshold
=
5
e6
,
treatment
=
"DMSO"
,
count_threshold
=
3
e6
,
treatment
=
"DMSO"
,
output_folder
=
output_folder
)
normalize_on_stable_gene
(
count_threshold
=
4.8
e6
,
treatment
=
"BRAF"
,
count_threshold
=
3
e6
,
treatment
=
"BRAF"
,
output_folder
=
output_folder
)
normalize_on_stable_gene
(
count_threshold
=
5
e6
,
treatment
=
"DMSO"
,
count_threshold
=
3
e6
,
treatment
=
"DMSO"
,
use_ercc
=
T
,
output_folder
=
output_folder
)
normalize_on_stable_gene
(
count_threshold
=
4.8
e6
,
treatment
=
"BRAF"
,
count_threshold
=
3
e6
,
treatment
=
"BRAF"
,
use_ercc
=
T
,
output_folder
=
output_folder
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment