Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
ChIA-PET_network
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LBMC
ReGArDS
ChIA-PET_network
Commits
80f66904
Commit
80f66904
authored
4 years ago
by
nfontrod
Browse files
Options
Downloads
Patches
Plain Diff
src/nt_composition/make_nt_correlation.py: handles now multiprocessing
parent
d3e90aca
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/nt_composition/make_nt_correlation.py
+63
-17
63 additions, 17 deletions
src/nt_composition/make_nt_correlation.py
with
63 additions
and
17 deletions
src/nt_composition/make_nt_correlation.py
+
63
−
17
View file @
80f66904
...
...
@@ -17,16 +17,21 @@ import doctest
from
.config
import
ConfigNt
from
..logging_conf
import
logging_def
from
tqdm
import
tqdm
from
typing
import
Dict
,
Tuple
from
typing
import
Dict
,
Tuple
,
Any
,
List
import
seaborn
as
sns
import
matplotlib.pyplot
as
plt
from
scipy.stats
import
linregress
from
itertools
import
product
from
random
import
random
import
multiprocessing
as
mp
import
os
class
NoInteractionError
(
Exception
):
pass
POSITION
=
0
def
get_project_colocalisation
(
cnx
:
sqlite3
.
Connection
,
project
:
str
)
->
np
.
array
:
...
...
@@ -37,7 +42,7 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str
:param project: The project of interest
:return: The table containing the number of interaction by projects
"""
logging
.
debug
(
'
Recovering interaction
'
)
logging
.
debug
(
f
'
Recovering interaction
(
{
os
.
getpid
()
}
)
'
)
query
=
"
SELECT exon1, exon2
"
\
"
FROM cin_exon_interaction
"
\
f
"
WHERE id_project =
'
{
project
}
'"
...
...
@@ -124,10 +129,11 @@ def create_density_table(arr_interaction: np.array, dic_freq: Dict[str, float],
:param dic_freq: The frequency dataframe.
:return: The density table
"""
logging
.
debug
(
'
Calculating density table
'
)
logging
.
debug
(
f
'
Calculating density table
(
{
os
.
getpid
()
}
)
'
)
exons_list
=
get_interacting_exon
(
arr_interaction
)
dic
=
{
'
exon
'
:
[],
'
freq_exon
'
:
[],
'
freq_coloc_exon
'
:
[],
'
oexon
'
:
[]}
pbar
=
tqdm
(
exons_list
,
desc
=
"
Getting frequencies...
"
)
pbar
=
tqdm
(
exons_list
,
desc
=
f
"
Getting frequencies...(
{
os
.
getpid
()
}
)
"
,
position
=
mp
.
current_process
().
_identity
[
0
]
-
1
)
for
exon
in
pbar
:
freq_ex
=
dic_freq
[
exon
]
oexon
=
get_all_exon_interacting_with_another
(
exon
,
arr_interaction
)
...
...
@@ -199,10 +205,13 @@ def create_density_figure(nt: str, ft_type: str,
dic_freq
=
get_frequency_dic
(
cnx
,
nt
,
ft_type
)
df
=
create_density_table
(
arr_interaction
,
dic_freq
)
df
.
to_csv
(
outfile
,
sep
=
"
\t
"
,
index
=
False
)
r
,
p
=
create_density_fig
(
df
,
project
,
ft_type
,
nt
)
else
:
logging
.
debug
(
f
'
The file
{
outfile
}
exist, recovering data ...
'
)
logging
.
debug
(
f
'
The file
{
outfile
}
exist, recovering data
'
f
'
(
{
os
.
getpid
()
}
)
'
)
df
=
pd
.
read_csv
(
outfile
,
sep
=
"
\t
"
)
return
create_density_fig
(
df
,
project
,
ft_type
,
nt
)
s
,
i
,
r
,
p
,
stderr
=
linregress
(
df
.
freq_exon
,
df
.
freq_coloc_exon
)
return
r
,
p
def
create_scatterplot
(
df_cor
:
pd
.
DataFrame
,
ft_type
:
str
,
ft
:
str
):
...
...
@@ -221,7 +230,11 @@ def create_scatterplot(df_cor: pd.DataFrame, ft_type: str, ft: str):
(
df_cor
[
'
ft
'
]
==
ft
)].
copy
()
sns
.
scatterplot
(
x
=
'
cor
'
,
y
=
'
nb_interaction
'
,
data
=
df_cor
)
left
,
right
=
plt
.
xlim
()
plt
.
text
(
df_cor
.
cor
+
right
*
0.03
,
df_cor
.
nb_interaction
,
)
bottom
,
top
=
plt
.
ylim
()
for
i
in
range
(
df_cor
.
shape
[
0
]):
plt
.
text
(
df_cor
.
cor
.
values
[
i
]
+
right
*
0.005
,
df_cor
.
nb_interaction
.
values
[
i
]
+
random
()
*
top
/
60
,
df_cor
.
project
.
values
[
i
],
fontsize
=
8
)
plt
.
xlabel
(
f
"
Correlation for
{
ft
}
(
{
ft_type
}
) in project
"
)
plt
.
ylabel
(
"
Number of total interaction in projects
"
)
plt
.
title
(
f
'
Project correlation for
{
ft
}
(
{
ft_type
}
)
'
...
...
@@ -230,28 +243,61 @@ def create_scatterplot(df_cor: pd.DataFrame, ft_type: str, ft: str):
plt
.
close
()
def
create_all_frequency_figures
(
logging_level
:
str
=
"
DISABLE
"
):
def
execute_density_figure_function
(
di
:
pd
.
DataFrame
,
project
:
str
,
ft_type
:
str
,
ft
:
str
)
->
Dict
[
str
,
Any
]:
"""
Execute create_density_figure and organized the results in a dictionary.
:param project: The project of interest
:param ft_type: The feature type of interest
:param ft: The feature of interest
:return:
"""
logging
.
info
(
f
'
Working on
{
project
}
,
{
ft_type
}
,
{
ft
}
-
{
os
.
getpid
()
}
'
)
r
,
p
=
create_density_figure
(
ft
,
ft_type
,
project
)
tmp
=
{
"
project
"
:
project
,
"
ft_type
"
:
ft_type
,
"
ft
"
:
ft
,
"
cor
"
:
r
,
"
pval
"
:
p
,
'
nb_interaction
'
:
di
[
di
[
'
projects
'
]
==
project
].
iloc
[
0
,
1
]}
return
tmp
def
combine_dic
(
list_dic
:
Dict
)
->
Dict
:
"""
Combine The dictionaries in list_dic.
:param list_dic: A list of dictionaries
:return: The combined dictionary
"""
dic
=
{
k
:
[]
for
k
in
list_dic
[
0
]}
for
d
in
list_dic
:
for
k
in
d
:
dic
[
k
].
append
(
d
[
k
])
return
dic
def
create_all_frequency_figures
(
ps
:
int
,
logging_level
:
str
=
"
DISABLE
"
):
"""
Make density figure for every selected projects.
:param logging_level: The level of data to display.
:param ps: The number of processes to create
"""
logging_def
(
ConfigNt
.
interaction
,
__file__
,
logging_level
)
di
=
pd
.
read_csv
(
ConfigNt
.
interaction_file
,
sep
=
"
\t
"
)
dic
=
{
"
project
"
:
[],
'
ft_type
'
:
[],
'
ft
'
:
[],
'
nb_interaction
'
:
[],
'
cor
'
:
[],
'
pval
'
:
[]}
with
open
(
ConfigNt
.
selected_project
,
'
r
'
)
as
f
:
projects
=
f
.
read
().
splitlines
()
nt_list
=
[
'
A
'
,
'
C
'
,
'
G
'
,
'
T
'
,
'
S
'
,
'
W
'
]
param
=
product
(
projects
,
nt_list
,
[
'
nt
'
])
pool
=
mp
.
Pool
(
processes
=
ps
)
processes
=
[]
for
project
,
nt
,
ft_type
in
param
:
logging
.
info
(
f
'
Working on
{
project
}
,
{
ft_type
}
,
{
nt
}
'
)
r
,
p
=
create_density_figure
(
nt
,
ft_type
,
project
)
tmp
=
{
"
project
"
:
project
,
"
ft_type
"
:
ft_type
,
"
ft
"
:
nt
,
"
cor
"
:
r
,
"
pval
"
:
p
,
'
nb_interaction
'
:
di
[
di
[
'
projects
'
]
==
project
].
iloc
[
0
,
1
]}
for
k
in
tmp
.
keys
():
dic
[
k
].
append
(
tmp
[
k
])
args
=
[
di
,
project
,
ft_type
,
nt
]
processes
.
append
(
pool
.
apply_async
(
execute_density_figure_function
,
args
))
results
=
[]
for
proc
in
processes
:
results
.
append
(
proc
.
get
(
timeout
=
None
))
dic
=
combine_dic
(
results
)
df_corr
=
pd
.
DataFrame
(
dic
)
df_corr
.
to_csv
(
ConfigNt
.
density_folder
/
"
density_recap.txt
"
,
sep
=
"
\t
"
)
create_scatterplot
(
df_corr
,
"
nt
"
,
"
S
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment