Skip to content
Snippets Groups Projects
Verified Commit 81dc3887 authored by Laurent Modolo's avatar Laurent Modolo
Browse files

5_pseudo_time: update

parent 1a3b2177
Branches
No related tags found
No related merge requests found
Pipeline #334 failed
5_pseudo_time/img/DPT.png

501 KiB

5_pseudo_time/img/criteria_1.png

113 KiB

5_pseudo_time/img/criteria_2.png

124 KiB

5_pseudo_time/img/criteria_3.png

134 KiB

5_pseudo_time/img/criteria_4.png

41 KiB

5_pseudo_time/img/gene_cluster.png

164 KiB

5_pseudo_time/img/monocle_1.png

109 KiB | W: | H:

5_pseudo_time/img/monocle_1.png

45 KiB | W: | H:

5_pseudo_time/img/monocle_1.png
5_pseudo_time/img/monocle_1.png
5_pseudo_time/img/monocle_1.png
5_pseudo_time/img/monocle_1.png
  • 2-up
  • Swipe
  • Onion skin
5_pseudo_time/img/monocle_2.png

168 KiB

5_pseudo_time/img/monocle_3.png

124 KiB

5_pseudo_time/img/monocle_rge.png

221 KiB

5_pseudo_time/img/types_of_topology.png

65.2 KiB

5_pseudo_time/img/wishbone.png

1.04 MiB

...@@ -41,35 +41,187 @@ classoption: aspectratio=169 ...@@ -41,35 +41,187 @@ classoption: aspectratio=169
- Velocity - Velocity
6. Differential expression analysis (Monday 11 July 2022 - 15:30) 6. Differential expression analysis (Monday 11 July 2022 - 15:30)
# Continuous clustering # Continuous clustering
## Pseudo-time
\begin{center}
\begin{columns} \begin{columns}
\column{0.5\textwidth} \column{0.5\textwidth}
one RNA-Seq experiment constitutes a {\bf time series}, with each {\bf cell representing a distinct time point} along a continuum. one RNA-Seq experiment constitutes a {\bf time series}, with each {\bf cell representing a distinct time point} along a continuum.
\column{0.5\textwidth}
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=\textwidth]{img/pseudo_time.png}
}
\end{center}
\end{columns}
\end{center}
## Pseudo-time
\begin{center}
\begin{columns}
\column{0.5\textwidth} \column{0.5\textwidth}
one RNA-Seq experiment constitutes a {\bf time series}, with each {\bf cell representing a distinct time point} along a continuum. one RNA-Seq experiment constitutes a {\bf time series}, with each {\bf cell representing a distinct time point} along a continuum.
\column{0.5\textwidth}
\begin{center} \begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{ \href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[with=0.8\textwidth]{img/pseudo_time.png} \includegraphics[width=0.7\textwidth]{img/gene_cluster.png}
} }
\end{center} \end{center}
\end{columns} \end{columns}
\end{center}
# Path detection # Path detection
## Topology
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=0.8\textwidth]{img/types_of_topology.png}
}
\end{center}
## Monocle 1
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=0.8\textwidth]{img/monocle_1.png}
}
{\bf MST}: Minimum Spanning Tree
\end{center}
## Monocle 1 ## Monocle 1
\begin{center} \begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{ \href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[with=0.8\textwidth]{img/monocle_1.png} \includegraphics[width=0.7\textwidth]{img/monocle_2.png}
} }
\end{center} \end{center}
\begin{center}
traveling salesman problem (TSP)
\end{center}
## Monocle 2
### Reversed graph embedding: Dimensionality Reduction via Graph Structure Learning
\begin{center}
\href{http://dx.doi.org/10.1038/nmeth.4402}{
\includegraphics[width=0.7\textwidth]{img/monocle_rge.png}
}
\end{center}
## Monocle 3
\begin{center}
\href{http://cole-trapnell-lab.github.io/monocle-release/monocle3/}{
\includegraphics[width=0.7\textwidth]{img/monocle_3.png}
}
\end{center}
## Diffusion pseudotime (DPT)
\begin{center}
\href{http://dx.doi.org/10.1038/nmeth.3971}{
\includegraphics[width=\textwidth]{img/DPT.png}
}
\end{center}
\begin{itemize}
\item Diffusion map: Euclidean distance between points in the embedded space is equal to the "diffusion distance" between probability distributions centered at those points
\item Branching points are identified as points where anticorrelated distances from branch ends become correlated
\end{itemize}
## Wishbone
### k-NN followed by diffusion map
\begin{center}
\href{http://dx.doi.org/10.1038/nbt.3569}{
\includegraphics[width=0.8\textwidth]{img/wishbone.png}
}
\end{center}
# Cycle detection # Cycle detection
# Velocity ## Evalutation
### Topology
\begin{center}
\begin{columns}
\column{0.3\textwidth}
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=\textwidth]{img/criteria_1.png}
}
\end{center}
\column{0.7\textwidth}
Compute the distance between the real and infered topology and weight this distance by the edge lenght
\end{columns}
\end{center}
## Evalutation
### Branch assignment
\begin{center}
\begin{columns}
\column{0.3\textwidth}
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=\textwidth]{img/criteria_2.png}
}
\end{center}
\column{0.7\textwidth}
Harmonic mean between Recovery and Relevance
with:
{\bf Relevance} the similarity of all pairs of branches between
the two trajectories using the Jaccard similarity
{\bf Recovery}: the average maximal similarity of all branches in the reference dataset
\end{columns}
\end{center}
## Evalutation
### Cell positions
\begin{center}
\begin{columns}
\column{0.3\textwidth}
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=\textwidth]{img/criteria_3.png}
}
\end{center}
\column{0.7\textwidth}
Quantifies the similarity in cellular positions between two trajectories, by calculating the correlation between pairwise geodesic distances
\end{columns}
\end{center}
## Evalutation
### Cell positions
\begin{center}
\begin{columns}
\column{0.3\textwidth}
\begin{center}
\href{http://www.nature.com/doifinder/10.1038/nbt.2859}{
\includegraphics[width=\textwidth]{img/criteria_4.png}
}
\end{center}
\column{0.7\textwidth}
Agreement between trajectory differentially expressed features from the known trajectory and the predicted trajectory
\end{columns}
\end{center}
# single-cell RNA-Seq Differential expression analysis *Monday 11 July 2022* # single-cell RNA-Seq Differential expression analysis *Monday 11 July 2022*
......
...@@ -80,9 +80,17 @@ classoption: aspectratio=169 ...@@ -80,9 +80,17 @@ classoption: aspectratio=169
\end{center} \end{center}
# Parametric versus non-parametric testing # Parametric versus non-parametric testing
# Differential expression analysis between groups # Differential expression analysis between groups
## Differential expression analysis between $2$ groups ## Differential expression analysis between $2$ groups
## Between $n$ groups ## Between $n$ groups
# Regression analysis # Regression analysis
# Multiple testing # Multiple testing
# Post-selection inference
# Multivariate Differential expression analysis # Multivariate Differential expression analysis
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment