Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
kmerclust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LBMC
Delattre
kmerclust
Commits
cd0c90c4
Verified
Commit
cd0c90c4
authored
1 year ago
by
Laurent Modolo
Browse files
Options
Downloads
Patches
Plain Diff
add clustering on the log scale
parent
a556c25d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dev/flat_full.Rmd
+146
-103
146 additions, 103 deletions
dev/flat_full.Rmd
with
146 additions
and
103 deletions
dev/flat_full.Rmd
+
146
−
103
View file @
cd0c90c4
...
...
@@ -2,12 +2,13 @@
title: "flat_full.Rmd for working package"
output: html_document
editor_options:
chunk_output_type:
consol
e
chunk_output_type:
inlin
e
---
```{r load}
library(kmerclust)
library(tidyverse)
library(parallel)
```
```{r development-load}
...
...
@@ -59,7 +60,7 @@ sim_kmer <- function(n_kmer, mean_coef, sex = "XY", count = F) {
bind_rows(
tibble(
sex = "A",
count = mvtnorm::rmvnorm(n_kmer * 0.85, mean = c(
2
,
2
)*mean_coef, sigma = matrix(c(1, .95, .95, 1) * mean_coef^1.5 * 4, ncol = 2), method = "svd")
count = mvtnorm::rmvnorm(n_kmer * 0.85, mean = c(
1
,
1
)*mean_coef, sigma = matrix(c(1, .95, .95, 1) * mean_coef^1.5 * 4, ncol = 2), method = "svd")
%>% as_tibble(.name_repair = "universal")
) %>% unnest(c(count))
)
...
...
@@ -123,18 +124,18 @@ expand_theta <- function(theta, cluster_coef, sex) {
theta_ref <- list(
"a" = list(
"pi" = theta$pi[1],
"mu" = cluster_coef$a
*
theta$mu,
"mu" = cluster_coef$a
+
theta$mu,
"sigma" = theta$sigma$a
),
"f" = list(
"pi" = theta$pi[2],
"mu" = cluster_coef$f
*
theta$mu,
"mu" = cluster_coef$f
+
theta$mu,
"sigma" = theta$sigma$f
))
if (sex == "XY") {
theta_ref[["m"]] <- list(
"pi" = theta$pi[3],
"mu" = cluster_coef$m
*
theta$mu,
"mu" =
(
cluster_coef$m
+
theta$mu
) * c(1, 0)
,
"sigma" = theta$sigma$m
)
}
...
...
@@ -243,8 +244,14 @@ E_N_clust <- function(proba) {
M_mean <- function(x, proba, N_clust, cluster_coef, sex) {
mu <- 0
for (cluster in 1:ncol(proba)) {
mu <- mu +
mean(colSums(x * cluster_coef[[cluster]] * proba[, cluster]) / N_clust[cluster])
if (cluster == 3) {
mu <- mu +
mean(colSums((x - cluster_coef[[cluster]]) * c(1, 0) * proba[, cluster]) / N_clust[cluster])
} else {
mu <- mu +
mean(colSums((x - cluster_coef[[cluster]]) * proba[, cluster]) / N_clust[cluster])
}
}
if (sex == "XY") {
return(mu / 3)
...
...
@@ -266,7 +273,11 @@ M_mean <- function(x, proba, N_clust, cluster_coef, sex) {
M_cov <- function(x, proba, mu, N_clust, cluster_coef, sex) {
cov_clust <- list()
for (cluster in 1:ncol(proba)) {
cov_clust[[cluster]] <- t(proba[, cluster] * (x - mu * cluster_coef[[cluster]])) %*% (x - mu * cluster_coef[[cluster]]) / N_clust[cluster]
if (cluster == 3) {
cov_clust[[cluster]] <- t(proba[, cluster] * (x - (mu + cluster_coef[[cluster]]) * c(1, 0))) %*% (x - (mu + cluster_coef[[cluster]]) * c(1, 0)) / N_clust[cluster]
} else {
cov_clust[[cluster]] <- t(proba[, cluster] * (x - mu + cluster_coef[[cluster]])) %*% (x - mu + cluster_coef[[cluster]]) / N_clust[cluster]
}
}
sigma <- list()
sigma$a <- cov_clust[[1]]
...
...
@@ -320,10 +331,6 @@ plot_proba <- function(x, proba, sex = "XY") {
theme_bw()
}
}
sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XY$proba, sex = "XY")
```
```{r fun-init_param}
...
...
@@ -334,19 +341,19 @@ sample %>%
#' @return a list of parameters
init_param <- function(x, sex) {
cluster_coef <- list(
"a" = c(
1
,
1
),
"f" = c(
1
,
0.5
)
"a" = c(
0
,
0
),
"f" = c(
0
,
log(2)
)
)
theta <- list(
"pi" = c(.85, .1, .05),
"mu" = mean(colMeans(x))
* .5
"mu" = mean(colMeans(x))
)
theta$sigma <- list(
"a" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2),
"f" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
)
if (sex == "XY") {
cluster_coef$m <- c(
1
, 0)
cluster_coef$m <- c(
0
, 0)
theta$sigma$m <- matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
}
return(list(cluster_coef = cluster_coef, theta = theta))
...
...
@@ -392,13 +399,13 @@ EM_clust <- function(x, threshold = 1, sex = "XY") {
new_loglik <- 0
param <- init_param(x, sex)
while (abs(new_loglik - old_loglik) > threshold) {
old_loglik <- loglik(x
, param$theta,
param$cluster_coef, sex)
proba <- E_proba(x
, param$theta,
param$cluster_coef, sex)
param$theta$pi <- E_N_clust(proba)
param$theta$mu <- M_mean(x, proba
,
param$theta$pi, param
s
$cluster_coef, sex)
param$theta$sigma <- M_cov(x
,
proba, param$theta$mu, param$theta$pi, param$cluster_coef, sex)
old_loglik <- loglik(x
= x, theta = param$theta, cluster_coef =
param$cluster_coef,
sex =
sex)
proba <- E_proba(x
= x, theta = param$theta, cluster_coef =
param$cluster_coef,
sex =
sex)
param$theta$pi <- E_N_clust(proba
= proba
)
param$theta$mu <- M_mean(x
= x
, proba
= proba, N_clust =
param$theta$pi,
cluster_coef =
param$cluster_coef,
sex =
sex)
param$theta$sigma <- M_cov(x
= x, proba =
proba,
mu =
param$theta$mu,
N_clust =
param$theta$pi,
cluster_coef =
param$cluster_coef,
sex =
sex)
param$theta$pi <- param$theta$pi / nrow(x)
new_loglik <- loglik(x
, param$theta,
param$cluster_coef, sex)
new_loglik <- loglik(x
= x, theta = param$theta, cluster_coef =
param$cluster_coef,
sex =
sex)
if (is.infinite(new_loglik)) {
break
}
...
...
@@ -505,13 +512,21 @@ BSS_WSS <- function(x, cluster) {
# clustering XY
```{r clustering_XY}
data <- sim_kmer(1e
6
, 1000, "XY", count =T)
data <- sim_kmer(1e
5
, 1000, "XY", count =T)
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
mutate(
count_m = log1p(count_m),
count_f = log1p(count_f),
) %>%
as.matrix() %>%
EM_clust()
data %>%
dplyr::select(count_m, count_f) %>%
mutate(
count_m = log1p(count_m),
count_f = log1p(count_f),
) %>%
as.matrix() %>%
plot_proba(model_XY$proba)
```
...
...
@@ -519,13 +534,23 @@ data %>%
# clustering XO
```{r clustering_XO}
data <- sim_kmer(1e
4
, 1000, "XO")
data <- sim_kmer(1e
5
, 1000, "XO")
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
mutate(
count_m = log1p(count_m),
count_f = log1p(count_f),
) %>%
drop_na() %>%
as.matrix() %>%
EM_clust(sex = "X0")
data %>%
dplyr::select(count_m, count_f) %>%
mutate(
count_m = log1p(count_m),
count_f = log1p(count_f),
) %>%
drop_na() %>%
as.matrix() %>%
plot_proba(model_XO$proba, sex = "X0")
```
...
...
@@ -656,7 +681,7 @@ annotate_counts <- function(annotation, count, name) {
## M belari data
```{r dev}
load("../../results/12/mbelari/sample.Rdata"
, v = T
)
load("../../
../
results/12/mbelari/sample.Rdata")
```
```{r dev}
...
...
@@ -679,91 +704,42 @@ sample %>%
```
```{r dev}
sample %>%
select(count_m, count_f) %>%
sample_frac(0.01) %>%
mutate(
count_m = expm1(count_m),
count_f = expm1(count_f),
) %>%
ggplot(aes(x = count_m, y = count_f)) +
geom_point() +
theme_bw()
res <- compare_models(sample, nboot = 10, bootsize = 1, core = 8)
res %>%
ggplot(aes(x = name, y = BIC)) +
geom_violin()
res %>%
ggplot(aes(x = name, y = WSS_f / BSS)) +
geom_violin()
```
## M Longespiculosa data
```{r dev}
sample %>%
select(count_m, count_f) %>%
sample_frac(0.01) %>%
ggplot(aes(x = count_m, y = count_f)) +
geom_point() +
theme_bw()
load("../../../results/12/mlongespiculosa/sample.Rdata")
```
```{r dev}
library(flexmix)
count <- sample %>%
model_XY <- sample %>%
dplyr::select(count_m, count_f) %>%
mutate(
count_m = round(expm1(count_m)),
count_f = round(expm1(count_f)),
) %>%
filter(count_m > 0) %>%
mutate(
ratio = count_f / count_m
) %>%
sample_n(10000)
count %>%
ggplot(aes(x = ratio)) +
geom_histogram() +
scale_x_log10()
m_xy <- flexmix(
ratio ~ ratio,
k = 3,
data = count,
)
m_xo <- flexmix(
count_m ~ count_f,
k = 2,
data = count,
model = FLXglm(family = "poisson")
)
summary(m_xy)
parameters(m_xy, component = 1)
parameters(m_xy, component = 2)
parameters(m_xy, component = 3)
plot(m_xy)
rm_xy <- refit(m_xy)
summary(rm_xy)
count %>%
mutate(
proba1 = m_xy@posterior$scaled[, 1],
proba2 = m_xy@posterior$scaled[, 2],
proba3 = m_xy@posterior$scaled[, 3]
) %>%
pivot_longer(cols = c(proba1, proba2, proba3)) %>%
ggplot(aes(x = count_m, y = count_f, color = value)) +
geom_point() +
facet_wrap(~name) +
coord_equal() +
theme_bw()
```
```{r dev, eval=F}
data <- readr::read_tsv("../../results/12/mlongespiculosa/mlongespiculosa.csv", show_col_types = FALSE)
format(object.size(data), units = "Mb")
annotation <- parse_annotation("../../data/sample.csv")
count <- annotate_counts(annotation, data, "mlongespiculosa")
save(count, file = "results/12/mlongespiculosa/counts.Rdata")
load("results/12/mlongespiculosa/counts.Rdata")
```
```{r dev, eval=F}
res <- compare_models(count %>% dplyr::ungroup(), nboot = 100, bootsize = 0.1, core = 24)
as.matrix() %>%
EM_clust(sex = "XY")
model_XO <- sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "X0")
sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XY$proba, sex = "XY")
sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XO$proba, sex = "X0")
```
```{r dev}
res <- compare_models(sample, nboot = 10, bootsize = 1, core = 8)
res %>%
ggplot(aes(x = name, y = BIC)) +
geom_violin()
...
...
@@ -772,4 +748,71 @@ res %>%
geom_violin()
```
## M Spiculigera data
```{r dev}
load("../../../results/12/mspiculigera/sample.Rdata")
```
```{r dev}
model_XY <- sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "XY")
model_XO <- sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "X0")
sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XY$proba, sex = "XY")
sample %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XO$proba, sex = "X0")
```
```{r dev}
res <- compare_models(sample, nboot = 10, bootsize = 1, core = 8)
res %>%
ggplot(aes(x = name, y = BIC)) +
geom_violin()
res %>%
ggplot(aes(x = name, y = WSS_f / BSS)) +
geom_violin()
res
```
# tmvnorm test
```{r dev}
library(tmvtnorm)
mean <- c(1, 1)
sigma <- matrix(c(10, 0,
0, 1), 2, 2)
# Linear Constraints
#
# a1 <= x1 + x2 <= b2
# a2 <= x1 - x2 <= b2
#
# [ a1 ] <= [ 1 1 ] [ x1 ] <= [b1]
# [ a2 ] [ 1 -1 ] [ x2 ] [b2]
a <- c(0, 0)
b <- c( 30, 30)
D <- matrix(c(1, 1,
-1, 1), 2, 2)
X <- rtmvnorm(n=10000, mean, sigma, lower=a, upper=b, D=D, algorithm="gibbsR")
plot(X, main="Gibbs sampling for multivariate normal
with linear constraints according to Geweke (1991)")
abline(a=0, b=1, col="blue", lwd = 2)
abline(a=0, b=0, col="blue", lwd = 2)
# mark linear constraints as lines
for (i in 1:nrow(D)) {
abline(a=a[i]/D[i, 2], b=-D[i,1]/D[i, 2], col="red")
abline(a=b[i]/D[i, 2], b=-D[i,1]/D[i, 2], col="red")
}
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment