Skip to content
Snippets Groups Projects
Verified Commit d5e24c1b authored by Laurent Modolo's avatar Laurent Modolo
Browse files

add clustering XY and XO

parent a7d32fba
No related branches found
No related tags found
No related merge requests found
......@@ -90,24 +90,26 @@ plot(data_clust, what = "uncertainty")
```{r}
expand_theta <- function(theta, cluster_coef) {
list(
"f" = list(
"pi" = theta$pi[1],
"mu" = cluster_coef$f * theta$mu,
"sigma" = theta$sigma$f
),
"m" = list(
"pi" = theta$pi[2],
"mu" = cluster_coef$m * theta$mu,
"sigma" = theta$sigma$m
),
expand_theta <- function(theta, cluster_coef, sex) {
theta_ref <- list(
"a" = list(
"pi" = theta$pi[3],
"pi" = theta$pi[1],
"mu" = cluster_coef$a * theta$mu,
"sigma" = theta$sigma$a
)
)
),
"f" = list(
"pi" = theta$pi[2],
"mu" = cluster_coef$f * theta$mu,
"sigma" = theta$sigma$f
))
if (sex == "XY") {
theta_ref[["m"]] <- list(
"pi" = theta$pi[3],
"mu" = cluster_coef$m * theta$mu,
"sigma" = theta$sigma$m
)
}
return(theta_ref)
}
params_diff <- function(old_theta, theta, threshold) {
......@@ -121,18 +123,18 @@ params_diff <- function(old_theta, theta, threshold) {
return(T)
}
proba_total <- function(x, theta, cluster_coef) {
proba_total <- function(x, theta, cluster_coef, sex) {
proba <- 0
for (params in expand_theta(theta, cluster_coef)) {
for (params in expand_theta(theta, cluster_coef, sex)) {
proba <- proba + params$pi *
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma)
}
return(proba)
}
proba_point <- function(x, theta, cluster_coef) {
proba_point <- function(x, theta, cluster_coef, sex) {
proba <- c()
for (params in expand_theta(theta, cluster_coef)) {
for (params in expand_theta(theta, cluster_coef, sex)) {
proba <- cbind(proba, params$pi *
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma)
)
......@@ -140,13 +142,13 @@ proba_point <- function(x, theta, cluster_coef) {
return(proba)
}
loglik <- function(x, theta, cluster_coef) {
-log(sum(proba_total(x, theta, cluster_coef)))
loglik <- function(x, theta, cluster_coef, sex) {
-log(sum(proba_total(x, theta, cluster_coef, sex)))
}
# EM function
E_proba <- function(x, theta, cluster_coef) {
proba <- proba_point(x, theta, cluster_coef)
E_proba <- function(x, theta, cluster_coef, sex) {
proba <- proba_point(x, theta, cluster_coef, sex)
proba_norm <- rowSums(proba)
for (cluster in 1:ncol(proba)) {
proba[, cluster] <- proba[, cluster] / proba_norm
......@@ -160,78 +162,101 @@ E_N_clust <- function(proba) {
}
# Function for mean update
M_mean <- function(x, proba, N_clust) {
M_mean <- function(x, proba, N_clust, sex) {
mu <- 0
for (cluster in 1:ncol(proba)) {
if (cluster == 1) {
mu <- mu + 1/3 *
mean(colSums(x * c(1, 0.5) * proba[, cluster]) / N_clust[cluster])
mu <- mu +
mean(colSums(x * c(0.5, 0.5) * proba[, cluster]) / N_clust[cluster])
}
if (cluster == 2) {
mu <- mu + 1/3 *
(colSums(x * c(1, 0) * proba[, cluster]) / N_clust[cluster])[1]
mu <- mu +
mean(colSums(x * c(1, 0.5) * proba[, cluster]) / N_clust[cluster])
}
if (cluster == 2) {
mu <- mu + 1/3 *
mean(colSums(x * c(0.5, 0.5) * proba[, cluster]) / N_clust[cluster])
if (cluster == 3) {
mu <- mu +
(colSums(x * c(1, 0) * proba[, cluster]) / N_clust[cluster])[1]
}
}
return(mu)
if (sex == "XY") {
return(mu / 3)
}
return(mu / 2)
}
M_cov <- function(x, proba, mu, N_clust, cluster_coef) {
M_cov <- function(x, proba, mu, N_clust, cluster_coef, sex) {
cov_clust <- list()
for (cluster in 1:ncol(proba)) {
print(cluster_coef[[cluster]])
cov_clust[[cluster]] <- t(proba[, cluster] * (x - mu * cluster_coef[[cluster]])) %*% (x - mu * cluster_coef[[cluster]]) / N_clust[cluster]
}
sigma <- list()
sigma$f <- cov_clust[[1]]
sigma$m <- cov_clust[[2]]
sigma$a <- cov_clust[[3]]
sigma$a <- cov_clust[[1]]
sigma$f <- cov_clust[[2]]
if (sex == "XY") {
sigma$m <- cov_clust[[3]]
}
return(sigma)
}
plot_proba <- function(x, proba) {
as_tibble(x) %>%
mutate(
proba_f = proba[, 1],
proba_m = proba[, 2],
proba_a = proba[, 3],
clust_proba = rgb(proba_f, proba_m, proba_a, maxColorValue = 1)
) %>%
ggplot(aes(x = count_m, y = count_f, color = clust_proba)) +
geom_point() +
scale_color_identity()
plot_proba <- function(x, proba, sex = "XY") {
if (sex == "XY") {
as_tibble(x) %>%
mutate(
proba_a = proba[, 1],
proba_f = proba[, 2],
proba_m = proba[, 3],
clust_proba = rgb(proba_f, proba_m, proba_a, maxColorValue = 1)
) %>%
ggplot(aes(x = count_m, y = count_f, color = clust_proba)) +
geom_point() +
scale_color_identity()
} else {
as_tibble(x) %>%
mutate(
proba_a = proba[, 1],
proba_f = proba[, 2],
clust_proba = rgb(proba_f, 0, proba_a, maxColorValue = 1)
) %>%
ggplot(aes(x = count_m, y = count_f, color = clust_proba)) +
geom_point() +
scale_color_identity()
}
}
EM_clust <- function(x, threshold = 0.1) {
old_loglik <- -Inf
new_loglik <- 0
init_param <- function(x, sex) {
cluster_coef <- list(
"f" = c(1, 2),
"m" = c(1, 0),
"a" = c(2, 2)
"a" = c(2, 2),
"f" = c(1, 2)
)
theta <- list(
"pi" = c(.1, .05, .85),
"pi" = c(.85, .1, .05),
"mu" = mean(colMeans(x)) * .5
)
theta$sigma <- list(
"f" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2),
"m" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2),
"a" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
"a" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2),
"f" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
)
if (sex == "XY") {
cluster_coef$m <- c(1, 0)
theta$sigma$m <- matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
}
return(list(cluster_coef = cluster_coef, theta = theta))
}
EM_clust <- function(x, threshold = 0.1, sex = "XY") {
old_loglik <- -Inf
new_loglik <- 0
param <- init_param(x, sex)
while (abs(new_loglik - old_loglik) > threshold) {
old_loglik <- loglik(x, theta, cluster_coef)
proba <- E_proba(x, theta, cluster_coef)
theta$pi <- E_N_clust(proba)
theta$mu <- M_mean(x, proba, theta$pi)
theta$sigma <- M_cov(x, proba, theta$mu, theta$pi, cluster_coef)
theta$pi <- theta$pi / nrow(x)
new_loglik <- loglik(x, theta, cluster_coef)
old_loglik <- loglik(x, param$theta, param$cluster_coef, sex)
proba <- E_proba(x, param$theta, param$cluster_coef, sex)
param$theta$pi <- E_N_clust(proba)
param$theta$mu <- M_mean(x, proba, param$theta$pi, sex)
param$theta$sigma <- M_cov(x, proba, param$theta$mu, param$theta$pi, param$cluster_coef, sex)
param$theta$pi <- param$theta$pi / nrow(x)
new_loglik <- loglik(x, param$theta, param$cluster_coef, sex)
}
print(theta)
return(proba)
}
......@@ -245,6 +270,14 @@ data %>%
as.matrix() %>%
plot_proba(proba)
proba <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "X0")
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(proba, sex = "X0")
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment