Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
K
kmer diff
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
LBMC
Delattre
kmer diff
Commits
43dd449d
Verified
Commit
43dd449d
authored
1 year ago
by
Laurent Modolo
Browse files
Options
Downloads
Patches
Plain Diff
add clustering.Rmd
parent
e2be1c8b
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/clustering.Rmd
+49
-165
49 additions, 165 deletions
src/clustering.Rmd
with
49 additions
and
165 deletions
src/clustering.Rmd
+
49
−
165
View file @
43dd449d
...
...
@@ -79,10 +79,6 @@ data %>%
coord_fixed()
```
```{r}
data_clust = data %>% select(-c("sex")) %>% mclust::Mclust(G = 3)
```
...
...
@@ -93,7 +89,7 @@ plot(data_clust, what = "uncertainty")
```
```{r}
theta <- list(
theta
2
<- list(
"pi" = c(.1, .05, .85),
"mu" = list(c(1000, 2000), c(1000, 0), c(1000, 1000)),
"sigma" = list(
...
...
@@ -142,35 +138,36 @@ params_diff <- function(old_theta, theta, threshold) {
proba_total <- function(x, theta) {
proba <- 0
for (params in expand_theta(theta)) {
proba <- proba + params$pi *
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma)
print(params)
proba <- proba + params$pi +
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma, log = T)
}
print(proba)
return(proba)
}
proba_point <- function(x, theta) {
proba <- c()
for (params in expand_theta(theta)) {
proba <- cbind(proba, params$pi
*
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma)
proba <- cbind(proba, params$pi
+
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma
, log = T
)
)
}
return(proba)
}
loglik <- function(x, theta) {
-
log(
sum(proba_total(x, theta))
)
-sum(proba_total(x, theta))
}
# EM function
E_proba <- function(x, theta) {
proba <- proba_point(x, theta)
proba_norm <- rowSums(proba)
proba_norm <- rowSums(
exp(
proba)
)
for (cluster in 1:ncol(proba)) {
proba[, cluster] <- proba[, cluster] / proba_norm
proba[, cluster] <-
exp(
proba[, cluster]
)
/ proba_norm
proba[proba_norm == 0, cluster] <- 1 / ncol(proba)
}
return(proba)
}
...
...
@@ -205,181 +202,68 @@ plot_proba <- function(x, proba) {
proba_f = proba[, 1],
proba_m = proba[, 2],
proba_a = proba[, 3],
c
olor
= rgb(proba_f
* 255
, proba_m
* 255
, proba_a
* 255
, maxColorValue =
255
)
c
lust_proba
= rgb(proba_f, proba_m, proba_a, maxColorValue =
1
)
) %>%
ggplot(aes(x = count_m, y = count_f, color = color)) +
geom_point()
ggplot(aes(x = count_m, y = count_f, color = clust_proba)) +
geom_point() +
scale_color_identity()
}
EM_clust <- function(x, theta, threshold = 0.1) {
old_theta <- theta
old_theta$mu <- list(c(-Inf, -Inf), c(-Inf, -Inf), c(-Inf, -Inf))
while (params_diff(old_theta, theta, threshold)) {
old_loglik <- -Inf
new_loglik <- 0
while (abs(new_loglik - old_loglik) > threshold) {
old_loglik <- loglik(x, theta)
proba <- E_proba(x, theta)
theta$pi <- E_N_clust(proba)
theta$mu <- M_mean(x, proba, theta$pi)
theta$sigma <- M_cov(x, proba, theta$mu, theta$pi)
theta$pi <- theta$pi / nrow(x)
print(head(proba_point(x, theta)))
print(plot_proba(x, proba_point(x, theta)))
print(loglik(x, theta))
Sys.sleep(.5)
new_loglik <- loglik(x, theta)
# Sys.sleep(.5)
}
return(proba)
}
proba <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(theta2)
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(theta)
plot_proba(proba)
```
```{r}
theta4 <- list(
"pi" = c(.1, .05, .85),
"mu" = list(c(1000, 2000, 1000, 2000), c(1000, 0, 1000, 0), c(1000, 1000, 1000, 1000)),
"sigma" = list(
"f" = diag(1000, nrow=4, ncol=4),
"m" = diag(1000, nrow=4, ncol=4),
"a" = diag(1000, nrow=4, ncol=4)
)
)
proba4 <- data %>%
dplyr::select(count_m, count_f) %>%
dplyr::mutate(
count_m2 = count_m,
count_f2 = count_f) %>%
as.matrix() %>%
EM_clust(theta4)
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(proba4)
```
```{r}
## Example code for clustering on a three-component mixture model using the EM-algorithm.
### First we load some libraries and define some useful functions
## With real data
library(mvtnorm)
library(MASS)
# Create a 'true' data set (an easy one)
.create.data <- function(n)
{
l <- list()
l[[1]] <- list(component=1,
mixing.weight=0.5,
means=c(0,0),
cov=matrix(c(1,0,0,1), ncol=2, byrow=T))
l[[2]] <- list(mixing.weight=0.3,
component=2,
means=c(5,5),
cov=matrix(c(1, 0.5, 0.5, 1), ncol=2, byrow=T))
l[[3]] <- list(mixing.weight=0.2,
component=3,
means=c(10,10),
cov=matrix(c(1,0.75,0.75,1), ncol=2, byrow=T))
do.call("rbind",sapply(l, function(e) {
dat <- mvtnorm::rmvnorm(e$mixing.weight * n, e$means, e$cov)
cbind(component=e$component,
x1=dat[,1],
x2=dat[,2])
}))
}
# Function for covariance update
.cov <- function(n, r, dat, m, N.k)
{
(t(r * (dat[,2:3] -m)) %*% (( dat[,2:3]-m))) / N.k
}
# Generate starting values for means/covs/mixing weights
.init <- function()
{
l <- list()
l[[1]] <- list(mixing.weight=0.1,
means=c(-2, -2),
cov=matrix(c(1,0,0,1), ncol=2, byrow=T))
l[[2]] <- list(mixing.weight=0.1,
means=c(10, 0),
cov=matrix(c(1,0,0,1), ncol=2, byrow=T))
l[[3]] <- list(mixing.weight=0.8,
means=c(0, 10),
cov=matrix(c(1,0,0,1), ncol=2, byrow=T))
l
}
# Plot the 2D contours of the estimated Gaussian components
.contour <- function(means, cov, l)
{
X <- mvtnorm::rmvnorm(1000, means, cov)
z <- MASS::kde2d(X[,1], X[,2], n=50)
contour(z, drawlabels=FALSE, add=TRUE, lty=l, lwd=1.5)
}
# Do a scatter plot
.scatter <- function(dat, clusters)
{
plot(dat[,2], dat[,3],
xlab="X", ylab="Y", main="Three component Gaussian mixture model",
col=c("blue", "red", "orange", "black")[clusters],
pch=(1:4)[clusters])
col <- c("blue", "red", "orange")
pch <- 1:3
legend <- paste("Cluster", 1:3)
if (clusters == 4) {
col <- "black"
pch <- 4
legend = "No clusters"
}
legend("topleft", col=col, pch=pch, legend=legend)
}
n <- 10000
# create data with n samples
dat <- .create.data(n)
repeat
{
# set initial parameters
l <- .init()
# plot initial data
.scatter(dat, 4)
invisible(lapply(1:3, function(e) .contour(l[[e]]$means, l[[e]]$cov, 1)))
# Usually we would do a convergence criterion, e.g. compare difference of likelihoods
# but this will suffice for the hands on
for (i in seq(50))
{
### E step
# Compute the sum of all responsibilities (for normalization)
r <- sapply(l, function(r)
{
r$mixing.weight * mvtnorm::dmvnorm(dat[,2:3], r$means, r$cov)
})
r <- apply(r, 1, sum)
# Compute the responsibilities for each sample
rs <- sapply(l, function(e)
{
e$mixing.weight * mvtnorm::dmvnorm(dat[,2:3], e$means, e$cov) / r
})
# Compute number of points per cluster
N.k <- apply(rs, 2, sum)
### M step
# Compute the new means
m <- lapply(1:3, function(e)
{
apply(rs[,e] * dat[,2:3], 2, sum) / N.k[e]
})
# Compute the new covariances
c <- lapply(1:3, function(e)
{
.cov(n, rs[,e], dat, m[[e]], N.k[e])
})
# Compute the new mixing weights
mi <- N.k / n
# Update the old parameters
l <- lapply(1:3, function(e)
{
list(mixing.weight = mi[e], means=m[[e]], cov=c[[e]])
})
# Plot a 2D density (contour) to show the estimated means and covariances
if (i %% 5 == 0)
{
Sys.sleep(1.5)
.scatter(dat, apply(rs, 1, which.max))
invisible(lapply(1:3, function(e) .contour(l[[e]]$means, l[[e]]$cov, e + 1)))
}
}
}
```{r}
data <- read_csv("../results/fusion.csv")
```
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment