Skip to content
Snippets Groups Projects
Verified Commit 13335ade authored by Laurent Modolo's avatar Laurent Modolo
Browse files

add LTR and BIC

parent d5e24c1b
Branches
No related tags found
No related merge requests found
......@@ -49,30 +49,36 @@ test_slope(1.05, 2.05, 0.95)
Simulate k-mer counts data
```{r}
n_kmer = 1e2
mean_coef = 1000
data <- tibble(
sex = "F",
count = mvtnorm::rmvnorm(n_kmer * .1, mean = c(1, 2)*mean_coef, sigma = matrix(c(1.05, 2, 2, 4.05) * mean_coef^1.5, ncol = 2), checkSymmetry = F, method = "svd") %>%
as_tibble()
) %>%
unnest(count) %>%
bind_rows(
tibble(
sex = "M",
count = mvtnorm::rmvnorm(n_kmer * .05, mean = c(1, 0)*mean_coef, sigma = matrix(c(.9, .05, .05, .05) * mean_coef^1.5, ncol = 2), method = "svd")
%>% as_tibble()
) %>%
unnest(count)
) %>% bind_rows(
tibble(
sex = "A",
count = mvtnorm::rmvnorm(n_kmer * 0.85, mean = c(2, 2)*mean_coef, sigma = matrix(c(1, .95, .95, 1) * mean_coef^1.5 * 4, ncol = 2), method = "svd")
%>% as_tibble()
) %>% unnest(count)
) %>%
rename(count_m = V1,
count_f = V2)
sim_kmer <- function(n_kmer, mean_coef, sex = "XY") {
data <- tibble(
sex = "F",
count = mvtnorm::rmvnorm(n_kmer * .1, mean = c(1, 2)*mean_coef, sigma = matrix(c(1.05, 2, 2, 4.05) * mean_coef^1.5, ncol = 2), checkSymmetry = F, method = "svd") %>%
as_tibble()
) %>%
unnest(count) %>%
bind_rows(
tibble(
sex = "A",
count = mvtnorm::rmvnorm(n_kmer * 0.85, mean = c(2, 2)*mean_coef, sigma = matrix(c(1, .95, .95, 1) * mean_coef^1.5 * 4, ncol = 2), method = "svd")
%>% as_tibble()
) %>% unnest(count)
)
if (sex == "XY") {
data <- data %>%
bind_rows(
tibble(
sex = "M",
count = mvtnorm::rmvnorm(n_kmer * .05, mean = c(1, 0)*mean_coef, sigma = matrix(c(.9, .05, .05, .05) * mean_coef^1.5, ncol = 2), method = "svd")
%>% as_tibble()
) %>%
unnest(count)
)
}
data %>%
rename(count_m = V1,
count_f = V2)
}
data <- sim_kmer(1e4, 1000, "XY")
data %>%
ggplot(aes(x = count_m, y = count_f, color = sex)) +
geom_point() +
......@@ -123,15 +129,6 @@ params_diff <- function(old_theta, theta, threshold) {
return(T)
}
proba_total <- function(x, theta, cluster_coef, sex) {
proba <- 0
for (params in expand_theta(theta, cluster_coef, sex)) {
proba <- proba + params$pi *
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma)
}
return(proba)
}
proba_point <- function(x, theta, cluster_coef, sex) {
proba <- c()
for (params in expand_theta(theta, cluster_coef, sex)) {
......@@ -143,7 +140,7 @@ proba_point <- function(x, theta, cluster_coef, sex) {
}
loglik <- function(x, theta, cluster_coef, sex) {
-log(sum(proba_total(x, theta, cluster_coef, sex)))
sum(log(rowSums(proba_point(x, theta, cluster_coef, sex))))
}
# EM function
......@@ -243,8 +240,16 @@ init_param <- function(x, sex) {
return(list(cluster_coef = cluster_coef, theta = theta))
}
compute_bic <- function(x, loglik, sex = "XY") {
k <- 1 + 4 * 2
if (sex == "YX") {
k <- k + 4
}
return(k * log(nrow(x)) - 2 * loglik)
}
EM_clust <- function(x, threshold = 0.1, sex = "XY") {
EM_clust <- function(x, threshold = 1, sex = "XY") {
old_loglik <- -Inf
new_loglik <- 0
param <- init_param(x, sex)
......@@ -256,53 +261,80 @@ EM_clust <- function(x, threshold = 0.1, sex = "XY") {
param$theta$sigma <- M_cov(x, proba, param$theta$mu, param$theta$pi, param$cluster_coef, sex)
param$theta$pi <- param$theta$pi / nrow(x)
new_loglik <- loglik(x, param$theta, param$cluster_coef, sex)
if(is.infinite(new_loglik)) {
break
}
}
return(proba)
return(list(proba = proba, theta = param$theta, loglik = new_loglik, BIC = compute_bic(x, new_loglik, sex)))
}
```
# clustering XY
proba <- data %>%
```{r}
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust()
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(proba)
plot_proba(model_XY$proba)
```
proba <- data %>%
# clustering XO
```{r}
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "X0")
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(proba, sex = "X0")
plot_proba(model_XO$proba, sex = "X0")
```
# LRT
## For XY
```{r}
theta4 <- list(
"pi" = c(.1, .05, .85),
"mu" = list(c(1000, 2000, 1000, 2000), c(1000, 0, 1000, 0), c(1000, 1000, 1000, 1000)),
"sigma" = list(
"f" = diag(1000, nrow=4, ncol=4),
"m" = diag(1000, nrow=4, ncol=4),
"a" = diag(1000, nrow=4, ncol=4)
)
)
proba4 <- data %>%
data <- sim_kmer(1e3, 1000, "XY")
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
dplyr::mutate(
count_m2 = count_m,
count_f2 = count_f) %>%
as.matrix() %>%
EM_clust(theta4)
EM_clust()
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "XO")
model_XY$BIC
model_XO$BIC
-2 * (model_XY$loglik - model_XO$loglik)
-2 * (model_XO$loglik - model_XY$loglik)
pchisq(-2 * (model_XY$loglik - model_XO$loglik), 4)
pchisq(-2 * (model_XO$loglik - model_XY$loglik), 4)
```
data %>%
## For XO
```{r}
data <- sim_kmer(1e3, 1000, "XO")
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust()
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(proba4)
EM_clust(sex = "XO")
model_XY$BIC
model_XO$BIC
- 2 * (model_XY$loglik - model_XO$loglik)
- 2 * (model_XO$loglik - model_XY$loglik)
pchisq(-2 * (model_XY$loglik - model_XO$loglik), 4)
pchisq(-2 * (model_XO$loglik - model_XY$loglik), 4)
```
## With real data
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment