-
Laurent Modolo authoredLaurent Modolo authored
clustering.Rmd 11.35 KiB
title: "kmer clustering"
author: "Laurent Modolo"
date: "`r Sys.Date()`"
output: html_document
knitr::opts_chunk$set(echo = TRUE)
library(mclust)
library(tidyverse)
library(mvtnorm)
Simulation
If we expect to have with
the female k-mer count and
the male k-mer count, the following relation for a XY species:
- For the autosomal chromosomes:
- For the X chromosomes:
- For the Y chromosomes:
Which becomes on the
scale:
- For the autosomal chromosomes:
- For the X chromosomes:
- For the Y chromosomes:
Test slope for a given sigma matrice
test_slope <- function(x, y, rho) {
test <- mvtnorm::rmvnorm(1e4, mean = c(0, 0), sigma = matrix(c(x^2, rho*x*y, rho*x*y, y^2), ncol = 2), checkSymmetry = F, method = "svd") %>%
as_tibble()
ggplot(data = test, aes(x = V1, y = V2)) +
geom_point() +
geom_smooth(method = lm) +
labs(title = lm(test$V2 ~ test$V1)$coef[2]) +
coord_fixed()
}
test_slope(1.05, 2.05, 0.95)
Simulate k-mer counts data
sim_kmer <- function(n_kmer, mean_coef, sex = "XY") {
data <- tibble(
sex = "F",
count = mvtnorm::rmvnorm(n_kmer * .1, mean = c(1, 2)*mean_coef, sigma = matrix(c(1.05, 2, 2, 4.05) * mean_coef^1.5, ncol = 2), checkSymmetry = F, method = "svd") %>%
as_tibble()
) %>%
unnest(count) %>%
bind_rows(
tibble(
sex = "A",
count = mvtnorm::rmvnorm(n_kmer * 0.85, mean = c(2, 2)*mean_coef, sigma = matrix(c(1, .95, .95, 1) * mean_coef^1.5 * 4, ncol = 2), method = "svd")
%>% as_tibble()
) %>% unnest(count)
)
if (sex == "XY") {
data <- data %>%
bind_rows(
tibble(
sex = "M",
count = mvtnorm::rmvnorm(n_kmer * .05, mean = c(1, 0)*mean_coef, sigma = matrix(c(.9, .05, .05, .05) * mean_coef^1.5, ncol = 2), method = "svd")
%>% as_tibble()
) %>%
unnest(count)
)
}
data %>%
rename(count_m = V1,
count_f = V2)
}
data <- sim_kmer(1e4, 1000, "XY")
data %>%
ggplot(aes(x = count_m, y = count_f, color = sex)) +
geom_point() +
coord_fixed()
data_clust = data %>% select(-c("sex")) %>% mclust::Mclust(G = 3)
summary(data_clust)
plot(data_clust, what = "classification")
plot(data_clust, what = "uncertainty")
expand_theta <- function(theta, cluster_coef, sex) {
theta_ref <- list(
"a" = list(
"pi" = theta$pi[1],
"mu" = cluster_coef$a * theta$mu,
"sigma" = theta$sigma$a
),
"f" = list(
"pi" = theta$pi[2],
"mu" = cluster_coef$f * theta$mu,
"sigma" = theta$sigma$f
))
if (sex == "XY") {
theta_ref[["m"]] <- list(
"pi" = theta$pi[3],
"mu" = cluster_coef$m * theta$mu,
"sigma" = theta$sigma$m
)
}
return(theta_ref)
}
params_diff <- function(old_theta, theta, threshold) {
result <- max(
max(abs(old_theta$pi - theta$pi)),
max(abs(old_theta$mu - theta$mu))
)
if (is.finite(result)) {
return(results > threshold)
}
return(T)
}
proba_point <- function(x, theta, cluster_coef, sex) {
proba <- c()
for (params in expand_theta(theta, cluster_coef, sex)) {
proba <- cbind(proba, params$pi *
mvtnorm::dmvnorm(x, mean = params$mu, sigma = params$sigma)
)
}
return(proba)
}
loglik <- function(x, theta, cluster_coef, sex) {
sum(log(rowSums(proba_point(x, theta, cluster_coef, sex))))
}
# EM function
E_proba <- function(x, theta, cluster_coef, sex) {
proba <- proba_point(x, theta, cluster_coef, sex)
proba_norm <- rowSums(proba)
for (cluster in 1:ncol(proba)) {
proba[, cluster] <- proba[, cluster] / proba_norm
proba[proba_norm == 0, cluster] <- 1 / ncol(proba)
}
return(proba)
}
E_N_clust <- function(proba) {
colSums(proba)
}
# Function for mean update
M_mean <- function(x, proba, N_clust, sex) {
mu <- 0
for (cluster in 1:ncol(proba)) {
if (cluster == 1) {
mu <- mu +
mean(colSums(x * c(0.5, 0.5) * proba[, cluster]) / N_clust[cluster])
}
if (cluster == 2) {
mu <- mu +
mean(colSums(x * c(1, 0.5) * proba[, cluster]) / N_clust[cluster])
}
if (cluster == 3) {
mu <- mu +
(colSums(x * c(1, 0) * proba[, cluster]) / N_clust[cluster])[1]
}
}
if (sex == "XY") {
return(mu / 3)
}
return(mu / 2)
}
M_cov <- function(x, proba, mu, N_clust, cluster_coef, sex) {
cov_clust <- list()
for (cluster in 1:ncol(proba)) {
cov_clust[[cluster]] <- t(proba[, cluster] * (x - mu * cluster_coef[[cluster]])) %*% (x - mu * cluster_coef[[cluster]]) / N_clust[cluster]
}
sigma <- list()
sigma$a <- cov_clust[[1]]
sigma$f <- cov_clust[[2]]
if (sex == "XY") {
sigma$m <- cov_clust[[3]]
}
return(sigma)
}
plot_proba <- function(x, proba, sex = "XY") {
if (sex == "XY") {
as_tibble(x) %>%
mutate(
proba_a = proba[, 1],
proba_f = proba[, 2],
proba_m = proba[, 3],
clust_proba = rgb(proba_f, proba_m, proba_a, maxColorValue = 1)
) %>%
ggplot(aes(x = count_m, y = count_f, color = clust_proba)) +
geom_point() +
scale_color_identity()
} else {
as_tibble(x) %>%
mutate(
proba_a = proba[, 1],
proba_f = proba[, 2],
clust_proba = rgb(proba_f, 0, proba_a, maxColorValue = 1)
) %>%
ggplot(aes(x = count_m, y = count_f, color = clust_proba)) +
geom_point() +
scale_color_identity()
}
}
init_param <- function(x, sex) {
cluster_coef <- list(
"a" = c(2, 2),
"f" = c(1, 2)
)
theta <- list(
"pi" = c(.85, .1, .05),
"mu" = mean(colMeans(x)) * .5
)
theta$sigma <- list(
"a" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2),
"f" = matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
)
if (sex == "XY") {
cluster_coef$m <- c(1, 0)
theta$sigma$m <- matrix(c(1, 1, 1, 1) * theta$mu, ncol = 2)
}
return(list(cluster_coef = cluster_coef, theta = theta))
}
compute_bic <- function(x, loglik, sex = "XY") {
k <- 1 + 4 * 2
if (sex == "YX") {
k <- k + 4
}
return(k * log(nrow(x)) - 2 * loglik)
}
EM_clust <- function(x, threshold = 1, sex = "XY") {
old_loglik <- -Inf
new_loglik <- 0
param <- init_param(x, sex)
while (abs(new_loglik - old_loglik) > threshold) {
old_loglik <- loglik(x, param$theta, param$cluster_coef, sex)
proba <- E_proba(x, param$theta, param$cluster_coef, sex)
param$theta$pi <- E_N_clust(proba)
param$theta$mu <- M_mean(x, proba, param$theta$pi, sex)
param$theta$sigma <- M_cov(x, proba, param$theta$mu, param$theta$pi, param$cluster_coef, sex)
param$theta$pi <- param$theta$pi / nrow(x)
new_loglik <- loglik(x, param$theta, param$cluster_coef, sex)
if(is.infinite(new_loglik)) {
break
}
}
return(list(proba = proba, theta = param$theta, loglik = new_loglik, BIC = compute_bic(x, new_loglik, sex)))
}
boostrap_BIC <- function(x, sex = "XY", threshold = 1, nboot = 100, bootsize = 1000, core = 6) {
parallel::mclapply(as.list(1:nboot), function(iter, x, bootsize, sex) {
res <- x %>%
dplyr::select(count_m, count_f) %>%
sample_n(bootsize, replace = T) %>%
as.matrix() %>%
EM_clust(sex = sex)
res$BIC
}, x = x, bootsize = bootsize, sex = sex, mc.cores = 6) %>%
unlist()
}
compare_BIC <- function(x, threshold = 1, nboot = 100, bootsize = 1000, core = 6) {
tibble(
BIC_XY = boostrap_BIC(x, sex = "XY", threshold = threshold, nboot = nboot, bootsize = bootsize, core = core),
BIC_XO = boostrap_BIC(x, sex = "X0", threshold = threshold, nboot = nboot, bootsize = bootsize, core = core)
)
}
clustering XY
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust()
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XY$proba)
clustering XO
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "X0")
data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
plot_proba(model_XO$proba, sex = "X0")
LRT
For XY
data <- sim_kmer(1e2, 1000, "XY")
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust()
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "XO")
data <- sim_kmer(1e6, 1000, "XY")
For XO
data <- sim_kmer(1e2, 1000, "XO")
model_XY <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust()
model_XO <- data %>%
dplyr::select(count_m, count_f) %>%
as.matrix() %>%
EM_clust(sex = "XO")
pchisq(-2 * (model_XY$loglik - model_XO$loglik), 4)
Get Y k-mer
res <- compare_BIC(data)
res %>%
pivot_longer(cols = 1:2) %>%
ggplot(aes(x = name, y = value)) +
geom_violin()
data %>%
mutate(y_proba = model_XY$proba[,3]) %>%
ggplot(aes(x = count_m, count_f, color = y_proba)) +
geom_point() +
theme_bw()
With real data
data <- read_tsv("results/12/mbelari/mbelari.csv", show_col_types = FALSE)
format(object.size(data), units = "Mb")
annotation <- read_csv("data/sample.csv", show_col_types = FALSE) %>%
pivot_longer(!c(sex, specie), names_to = "read", values_to = "file") %>%
mutate(
file = gsub("/scratch/Bio/lmodolo/kmer_diff/data/.*/", "", file, perl = T),
file = gsub("\\.fasta\\.gz", "", file, perl = T)
) %>%
mutate(
file = paste0(file, ".csv")
) %>%
select(!c(read)) %>%
group_by(specie, sex) %>%
nest(.key = "files")
count <- annotation %>%
group_by(specie) %>%
nest(.key = "sex") %>%
mutate(count = lapply(sex, function(files, data){
files_f <- files %>% filter(sex == "female") %>% unnest(files) %>% pull(file) %>% as.vector()
files_m <- files %>% filter(sex == "male") %>% unnest(files) %>% pull(file) %>% as.vector()
data %>%
select(kmer) %>%
mutate(
female = data %>% select(any_of(files_f)) %>% rowMeans(),
male = data %>% select(any_of(files_m)) %>% rowMeans()
)
}, data = data)) %>%
unnest(sex) %>%
unnest(count)
save(count, file = "results/12/mbelari/counts.Rdata")
M belari data
load("results/12/mbelari/counts.Rdata")
s_count <- count %>%
ungroup() %>%
sample_frac(0.01) %>%
dplyr::select(male, female) %>%
mutate(
count_m = log1p(male),
count_f = log1p(female)
)
model_XY <- s_count %>%
as.matrix() %>%
EM_clust()
model_XO <- s_count %>%
as.matrix() %>%
EM_clust(sex = "XO")
model_XO$BIC
model_XY$BIC
s_count %>%
as.matrix() %>%
plot_proba(model_XO$proba, sex = "XO")