diff --git a/src/.docker_modules/r-bolero/1.0/HBV_RNAs_count.R b/src/.docker_modules/r-bolero/1.0/HBV_RNAs_count.R index ea15c73677d5bd5d9a21cd23eee4d02a6d4c0fad..16d67f3f8dd8a9161ff7006c410bda1291d45e63 100644 --- a/src/.docker_modules/r-bolero/1.0/HBV_RNAs_count.R +++ b/src/.docker_modules/r-bolero/1.0/HBV_RNAs_count.R @@ -74,7 +74,7 @@ countSP <- dplyr::inner_join(palette_complete, #print(names(countSP)) countSP$nom <- factor(countSP$nom, levels = all_species_name) -countSP <- mutate(countSP, +countSP <- dplyr::mutate(countSP, proportion = (as.numeric(n)/sum(as.numeric(n))*100)) #print(countSP) ggplot(countSP, aes(x = "percent", @@ -112,7 +112,7 @@ classified_reads <- read.table(file = opt$classification, header = TRUE) not_spliced <- classified_reads[!(classified_reads$read_ID %in% clean_SP$id),] -not_spliced <- mutate(not_spliced, +not_spliced <- dplyr::mutate(not_spliced, species = not_spliced$promoter) #print(not_spliced) not_spliced <- not_spliced %>% select(read_ID, species) @@ -124,7 +124,7 @@ colnames(clean_SP_type) <- c("id", "species") df_species <- rbind.data.frame(not_spliced, clean_SP_type, stringsAsFactors = FALSE) count_species <- df_species %>% count(species) -count_species <- mutate(count_species, +count_species <- dplyr::mutate(count_species, percent = (as.numeric(n)/sum(as.numeric(n))*100)) #print(count_species) write.table(df_species, file = "All_reads_identified.csv", @@ -161,7 +161,7 @@ count_species_SPxx <- rbind.data.frame(count_species_SPxx, stringsAsFactors = FALSE) count_species_SPxx <- count_species_SPxx[count_species_SPxx$species %in% all_species_name[c(1:3,5,35)],] -count_species_SPxx <- mutate(count_species_SPxx, +count_species_SPxx <- dplyr::mutate(count_species_SPxx, percent=(as.numeric(n)/sum(as.numeric(n))*100)) #print(count_species_SPxx) # save the tab: @@ -229,7 +229,7 @@ ggsave(file = "Count_RNAs_species_clear.png", # SP composition clear: count_clear <- clean_SP[clean_SP$SP_name %in% SPvariants,] %>% count(SP_name) -count_clear <- mutate(count_clear, +count_clear <- dplyr::mutate(count_clear, proportion=(as.numeric(n)/sum(as.numeric(n))*100)) #print(count_clear) count_clear <- dplyr::inner_join(palette_complete, diff --git a/src/.docker_modules/r-bolero/1.0/Junctions_NanoSplicer.R b/src/.docker_modules/r-bolero/1.0/Junctions_NanoSplicer.R index bce38457601babac31813c62f3362a8736683671..5567a378b0c61e716092c77a7702f2360b2bf2b2 100644 --- a/src/.docker_modules/r-bolero/1.0/Junctions_NanoSplicer.R +++ b/src/.docker_modules/r-bolero/1.0/Junctions_NanoSplicer.R @@ -36,7 +36,7 @@ df <- df %>% df$donor <- str_replace(df$donor, '[(]', '') df$acceptor <- str_replace(df$acceptor, '[)]', '') -df <- mutate(df, +df <- dplyr::mutate(df, pg_donor = as.numeric(donor)-122, pg_acceptor = as.numeric(acceptor)-122) @@ -110,7 +110,7 @@ assignation_acceptor <- function(pg_acceptor) { df$donor_site <- sapply(df$pg_donor, assignation_donor) df$acceptor_site <- sapply(df$pg_acceptor, assignation_acceptor) -df <- mutate(df, +df <- dplyr::mutate(df, junction = paste0(donor_site, acceptor_site)) write.table(df, file = "JWR_check_parsed.csv", row.names = FALSE, sep = "\t") diff --git a/src/.docker_modules/r-bolero/1.0/Start_positions.R b/src/.docker_modules/r-bolero/1.0/Start_positions.R index 683336e0aadc3fa2dd71374f3e4f3a2b4a07c6f5..f31afaae99dbcfd8686576f070d979db06277800 100644 --- a/src/.docker_modules/r-bolero/1.0/Start_positions.R +++ b/src/.docker_modules/r-bolero/1.0/Start_positions.R @@ -47,9 +47,9 @@ parsingData <- function(df) { tmp$Start <- as.numeric(tmp$Start) df2 <- as_tibble(tmp) %>% - mutate(bin = round(Start/binsize)*binsize) %>% + dplyr::mutate(bin = round(Start/binsize)*binsize) %>% group_by(bin) %>% - summarize(nb_reads = sum(Freq, na.rm = T)) + dplyr::summarize(nb_reads = sum(Freq, na.rm = T)) df2[is.na(df2)] <- 0 df2[3] <- rep(df[1,3], length(df2$bin)) colnames(df2) <- c("Start_position", "nb_reads", "Barcode")