#!/bin/sh # generate training set ll *.gz | sed 's/.gz//g' | awk '{system("gunzip -c "$9".gz > ~/data/JU28_59vs17_SNP/data/samples/"$9)}' cd ~/data/JU28_59vs17_SNP/data/samples/ ~/scripts/fastq_sampler/fastq_sampler.py -i 100000 -f MR_350_clean_1.fastq -g MR_350_clean_2.fastq ~/scripts/fastq_sampler/fastq_sampler.py -i 100000 -f MR_550_clean_1.fastq -g MR_550_clean_2.fastq ~/scripts/fastq_sampler/fastq_sampler.py -i 100000 -f NG-10944_JU2859_bis_lib169352_5217_1_1.fastq -g NG-10944_JU2859_bis_lib169352_5217_1_2.fastq ll s_*.fastq | awk '{system("gzip < "$9" > "$9".gz")}' cd ~/projects/JU28_59vs17_SNP/ # training set analysis mkdir tests cd tests ../nextflow ../src/SNP_calling.nf -c ../src/SNP_calling.config -profile docker --fasta "../data/fasta/DBG2OLC_output2.fasta" --fastq "../data/samples/*_{1,2}.fastq.gz" -resume -w ~/data/work_s/ --tumor "[\"s_NG-10944_JU2859_bis_lib169352_5217_1\"]" --normal "[\"s_MR_550_clean\", \"s_MR_350_clean\"]" --seq_number 800000 ~/scripts/sms.sh "SNP done" # real set analysis ./nextflow src/SNP_calling.nf -c src/SNP_calling.config -profile docker --fasta "data/fasta/DBG2OLC_output2.fasta" --fastq "data/fastq/*_{1,2}.fastq.gz" -resume -w ~/data/work/ --tumor "[\"NG-10944_JU2859_bis_lib169352_5217_1\"]" --normal "[\"MR_550_clean\", \"MR_350_clean\"]" ~/scripts/sms.sh "SNP done" src/intersect_SNP.R \ results/SNP/vcf_samtools/normal_sample_filtered.csv \ results/SNP/vcf_samtools/tumor_sample_filtered.csv \ results/fasta/DBG2OLC_output2_filtered.fasta ~/scripts/sms.sh "SNP analysis done"