Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Y
yellow_fever
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Laurent Modolo
yellow_fever
Commits
fde1f52a
Unverified
Commit
fde1f52a
authored
4 years ago
by
Laurent Modolo
Browse files
Options
Downloads
Patches
Plain Diff
clonality_paper.R: test on heatmap
parent
17425f65
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/clonality_paper.R
+100
-86
100 additions, 86 deletions
src/clonality_paper.R
with
100 additions
and
86 deletions
src/clonality_paper.R
+
100
−
86
View file @
fde1f52a
...
...
@@ -417,40 +417,6 @@ for (day in names(sce_day)) {
save
(
sce_day
,
file
=
"results/2020_01_02_clonality_paper_sce.Rdata"
)
load
(
file
=
"results/2020_01_02_clonality_paper_sce.Rdata"
)
DEA_DEA_clone_cell_type_size
<-
list
()
min_clone_size
<-
3
for
(
day
in
names
(
sce_day
))
{
colData
(
sce_day
[[
day
]])
$
clone_id
<-
colData
(
sce_day
[[
day
]])
%>%
as_tibble
()
%>%
mutate
(
clone_id
=
ifelse
(
clone_id
==
0
,
(
max
(
clone_id
)
+
1
)
:
(
max
(
clone_id
)
+
length
(
which
(
clone_id
==
0
))),
clone_id
))
%>%
pull
(
clone_id
)
colData
(
sce_day
[[
day
]])
$
clone_size
<-
colData
(
sce_day
[[
day
]])
%>%
as_tibble
()
%>%
left_join
(
colData
(
sce_day
[[
day
]])
%>%
as_tibble
()
%>%
group_by
(
clone_id
)
%>%
dplyr
::
summarise
(
clone_size
=
n
())
)
%>%
pull
(
clone_size
)
DEA_DEA_clone_cell_type_size
[[
day
]]
<-
DEA
(
sce_day
[[
day
]][,
colData
(
sce_day
[[
day
]])
$
clone_size
>=
min_clone_size
],
test
=
"~ (1|clone_id)"
,
formula
=
"count ~ p_PLS_DEA_cell_type + (1|clone_id)"
,
assay_name
=
"counts_vst"
,
cpus
=
10
)
save
(
DEA_DEA_clone_cell_type_size
,
file
=
"results/2020_01_01_DEA_DEA_clone_size.Rdata"
)
}
genes_PLS
<-
read_csv
(
"data/2017_11_28_List_Laurent_Genes_PLS.csv"
)
%>%
pivot_longer
(
cols
=
c
(
"Genes_EFF"
,
"Genes_MEM"
),
names_to
=
"type"
,
...
...
@@ -509,25 +475,25 @@ for (day in names(sce_day)) {
min_clone_size
<-
3
load
(
file
=
"results/2020_01_02_clonality_paper_sce.Rdata"
)
load
(
file
=
"results/2020_01_01_DEA_DEA_clone_size.Rdata"
)
load
(
file
=
"results/2020_01_01_DEA_clone_PCA_cell_type_size.Rdata"
,
v
=
T
)
## adj pvalue
for
(
day
in
names
(
sce_day
))
{
print
(
day
)
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size
<-
NA
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size
<-
get_genes_pval
(
DEA_
DEA_
clone_cell_type_size
[[
day
]],
sce_day
[[
day
]])
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size
<-
NA
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size
<-
get_genes_pval
(
DEA_clone_
PCA_
cell_type_size
[[
day
]],
sce_day
[[
day
]])
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size
%>%
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size
%>%
is.na
()
%>%
table
()
%>%
print
()
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size_adj
<-
p.adjust
(
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size
,
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size_adj
<-
p.adjust
(
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size
,
method
=
"BH"
)
table
(
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size_adj
<
0.05
)
%>%
print
()
table
(
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size_adj
<
0.05
)
%>%
print
()
}
day
<-
"593"
assays
(
sce_day
[[
day
]])
$
logcounts
<-
scater
::
logNormCounts
(
...
...
@@ -538,8 +504,8 @@ for (day in names(sce_day)) {
assay
(
.
,
"logcounts"
)
%>%
Matrix
::
Matrix
(
sparse
=
T
)
sce_DEA_hm
<-
sce_day
[[
day
]][
!
is.na
(
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size_adj
)
&
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_cell_type_size_adj
<
0.05
!
is.na
(
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size_adj
)
&
rowData
(
sce_day
[[
day
]])
$
pval_DEA_clone_
PCA_
cell_type_size_adj
<
0.05
]
sce_DEA_hm
%>%
dim
()
colData
(
sce_DEA_hm
)
<-
colData
(
sce_DEA_hm
)
%>%
...
...
@@ -568,7 +534,6 @@ rm_genes <- readr::read_delim(
future
::
plan
(
"multiprocess"
,
workers
=
10
)
test
<-
assay
(
sce_DEA_hm
,
"logcounts"
)
%>%
log1p
()
%>%
as.matrix
()
%>%
as_tibble
(
rownames
=
"gene_name"
)
%>%
tidyr
::
nest
(
counts
=
!
c
(
gene_name
))
%>%
...
...
@@ -584,17 +549,23 @@ rm_genes <- readr::read_delim(
mutate
(
count_var
=
purrr
::
map
(
.x
=
counts
,
.f
=
function
(
.x
){
var
(
.x
$
count
)
}),
count_mean
=
purrr
::
map
(
.x
=
counts
,
.f
=
function
(
.x
){
(
.x
$
count
)
})
)
%>%
unnest
(
count_var
)
%>%
filter
(
count_var
>
0.2
)
%>%
unnest
(
count_mean
)
%>%
select
(
count_var
,
count_mean
)
%>%
summary
()
filter
(
!
(
gene_name
%in%
rm_genes
$
geneid
))
%>%
filter
(
count_var
>
0.1
)
%>%
mutate
(
model
=
furrr
::
future_map
(
.x
=
counts
,
.f
=
function
(
.x
){
model.matrix
(
~
-1
+
clone_id
,
data
=
.x
)
%>%
glmnet
(
glmnet
::
glmnet
(
x
=
.
,
y
=
(
.x
%>%
pull
(
count
)),
lambda
=
cv.glmnet
(
lambda
=
glmnet
::
cv.glmnet
(
.
,
(
.x
%>%
pull
(
count
))
)
$
lambda.1se
...
...
@@ -605,58 +576,104 @@ rm_genes <- readr::read_delim(
mutate
(
coefs
=
map
(
model
,
tidy
))
%>%
select
(
-
c
(
counts
,
model
))
%>%
tidyr
::
unnest
(
coefs
)
gene_name
<-
test
%>%
janitor
::
clean_names
()
%>%
dplyr
::
filter
(
dev_ratio
>
0
)
%>%
group_by
(
gene_name
)
%>%
dplyr
::
summarize
(
estimate
=
max
(
abs
(
estimate
)),
)
%>%
# filter(estimate >= quantile(estimate, 0.90)) %>%
pull
(
gene_name
)
# cluster_row <-
test
%>%
cluster_row
<-
assay
(
sce_DEA_hm
,
"logcounts"
)
%>%
as.matrix
()
%>%
as_tibble
(
rownames
=
"gene_name"
)
%>%
filter
(
!
(
gene_name
%in%
rm_genes
$
geneid
))
%>%
tidyr
::
nest
(
counts
=
!
c
(
gene_name
))
%>%
mutate
(
counts
=
purrr
::
map
(
.x
=
counts
,
.f
=
function
(
.x
){
tibble
(
id
=
colnames
(
.x
),
count
=
t
(
.x
)[,
1
],
clone_id
=
colData
(
sce_DEA_hm
)
$
clone_id
)
}
)
)
%>%
mutate
(
count_var
=
purrr
::
map
(
.x
=
counts
,
.f
=
function
(
.x
){
var
(
.x
$
count
)
})
)
%>%
unnest
(
count_var
)
%>%
mutate
(
model
=
furrr
::
future_map
(
.x
=
counts
,
.f
=
function
(
.x
){
lm
(
count
~
clone_id
,
data
=
.x
)
},
.progress
=
TRUE
)
)
%>%
mutate
(
coefs
=
map
(
model
,
tidy
))
%>%
select
(
-
c
(
counts
,
model
))
%>%
tidyr
::
unnest
(
coefs
)
%>%
janitor
::
clean_names
()
%>%
filter
(
gene_name
%in%
gene_name
)
%>%
mutate
(
term
=
ifelse
(
dplyr
::
mutate
(
term
=
ifelse
(
term
==
"(Intercept)"
,
colData
(
sce_DEA_hm
)
$
clone_id
%>%
as.factor
()
%>%
levels
()
%>%
.
[
1
]
%>%
str_c
(
"clone_id"
,
.
),
term
)
)
%>%
mutate
(
dplyr
::
mutate
(
term
=
str_replace
(
term
,
"clone_id(.*)"
,
"\\1"
)
)
%>%
select
(
gene_name
,
term
,
estimate
)
%>%
mutate
(
id
=
1
:
nrow
(
.
),
estimate
=
ifelse
(
is.na
(
estimate
),
0
,
estimate
))
%>%
group_by
(
c
(
gene_name
,
id
)
%>%
summarise
(
estimate
=
sum
(
estimate
))
summarize
()
pivot_wider
(
id_cols
=
c
(
id
,
gene_name
),
dplyr
::
select
(
gene_name
,
term
,
estimate
)
%>%
tidyr
::
pivot_wider
(
id_cols
=
gene_name
,
names_from
=
term
,
values_from
=
estimate
values_from
=
estimate
,
values_fill
=
0
,
values_fn
=
sum
)
%>%
select
(
-
id
)
%>%
as.data.frame
()
as.data.frame
()
rownames
(
cluster_row
)
<-
cluster_row
$
gene_name
cluster_row
%>%
dim
()
sce_DEA_hm
%>%
dim
()
cluster_row
<-
assay
(
sce_DEA_hm
,
"logcounts"
)
%>%
as.matrix
()
%>%
as_tibble
(
rownames
=
"gene_name"
)
%>%
filter
(
!
(
gene_name
%in%
rm_genes
$
geneid
))
%>%
tidyr
::
nest
(
counts
=
!
c
(
gene_name
))
%>%
mutate
(
counts
=
purrr
::
map
(
.x
=
counts
,
.f
=
function
(
.x
){
tibble
(
id
=
colnames
(
.x
),
count
=
t
(
.x
)[,
1
],
clone_id
=
as.factor
(
colData
(
sce_DEA_hm
)
$
clone_id
)
)
%>%
group_by
(
clone_id
)
%>%
dplyr
::
summarise
(
id
=
id
,
count
=
count
,
clone_id
=
clone_id
,
count_mean
=
max
(
count
)
)
%>%
ungroup
()
}
)
)
%>%
tidyr
::
unnest
(
counts
)
%>%
janitor
::
clean_names
()
%>%
dplyr
::
select
(
gene_name
,
clone_id
,
count_mean
)
%>%
tidyr
::
pivot_wider
(
id_cols
=
gene_name
,
names_from
=
clone_id
,
values_from
=
count_mean
,
values_fill
=
0
,
values_fn
=
sum
)
%>%
as.data.frame
()
rownames
(
cluster_row
)
<-
cluster_row
$
gene_name
sce_DEA_hm_plot
<-
sce_DEA_hm
[
rownames
(
sce_DEA_hm
)
%in%
gene_name
,
]
sce_DEA_hm_plot
<-
sce_DEA_hm
[
rownames
(
sce_DEA_hm
)
%in%
cluster_row
$
gene_name
,
]
rowData
(
sce_DEA_hm_plot
)
$
gene_order
<-
cluster_row
[,
-1
]
%>%
dist
()
%>%
dist
(
method
=
"canberra"
)
%>%
hclust
()
%>%
.
$
order
rownames
(
sce_DEA_hm_plot
)
<-
rowData
(
sce_DEA_hm_plot
)
$
gene_name
sce_DEA_hm_plot
<-
sce_DEA_hm_plot
[
rowData
(
sce_DEA_hm_plot
)
$
gene_order
,
]
plotHeatmap
(
sce_DEA_hm_plot
,
sce_DEA_hm_plot
[
!
(
rowData
(
sce_DEA_hm_plot
)
$
gene_name
%in%
rm_genes
),]
,
features
=
rownames
(
sce_DEA_hm_plot
),
order_columns_by
=
c
(
"clone_id"
,
"p_PLS_DEA_cell_type"
),
colour_columns_by
=
c
(
"clone_id"
,
"p_PLS_DEA_cell_type"
),
...
...
@@ -665,7 +682,4 @@ plotHeatmap(
zlim
=
c
(
-5
,
5
),
main
=
day
,
cluster_rows
=
F
,
# order_rows_by = c("gene_order")
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment