% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitmodel.R \name{parallel_fit} \alias{parallel_fit} \title{Fit models in parallel for each group using mclapply and handle logging. Uses parallel_fit to fit the models.} \usage{ parallel_fit( groups, group_by, formula, data, n.cores = NULL, log_file = paste(tempdir(check = FALSE), "htrfit.log", sep = "/"), cl_type = "PSOCK", ... ) } \arguments{ \item{groups}{Vector of unique group values} \item{group_by}{Column name in data representing the grouping variable} \item{formula}{Formula specifying the model formula} \item{data}{Data frame containing the data} \item{n.cores}{The number of CPU cores to use for parallel processing. If set to NULL (default), the number of available CPU (minus 1) cores will be automatically detected.} \item{log_file}{File to write log (default : Rtmpdir/htrfit.log)} \item{cl_type}{cluster type (defautl "PSOCK"). "FORK" is recommanded for linux.} \item{...}{Additional arguments to be passed to the glmmTMB::glmmTMB function} } \value{ List of fitted model objects or NULL for any errors } \description{ Fit models in parallel for each group using mclapply and handle logging. Uses parallel_fit to fit the models. } \examples{ parallel_fit(group_by = "Species", groups = iris$Species, formula = Sepal.Length ~ Sepal.Width + Petal.Length, data = iris, n.cores = 1 ) }