diff --git a/test.R b/test.R deleted file mode 100644 index 6c04f08fc74b7f09f7117aabffb84fdd3532aea0..0000000000000000000000000000000000000000 --- a/test.R +++ /dev/null @@ -1,111 +0,0 @@ -## distribution reads per gene pour 1 mutant -y <- rnbinom(n = 6000, mu = 50, size = 5) -table(y) -barplot(table(y)) - - - -treatment <- sample(c(0,1), size = 2000, replace = TRUE) -treatment -c(0,1) - - -#range_mu = runif(1000, min=50, max=55) -#range_size = runif(1000, min=5, max=6) - -#sample(range_mu, size = 1000, replace = TRUE) - -N_gene = 6000 -N_mutant = 1 # for now -N_environment = 2 - - -y_env1 = rnbinom(n = N_gene, mu = 50, size = 5) -y_env2 = rnbinom(n = N_gene, mu = 2, size = 5) # modif distrib per environment -y = c(y_env1, y_env2) -mydta = array(data = y , dim = c(N_gene,N_mutant,N_environment)) -mydta[,,1] - - -dimnames(mydta) <- list("N" = sprintf("gene%d", 1:N_gene), - "M" = sprintf("mutant%d", 1:N_mutant), - "K" = sprintf("environment%d", 1:N_environment)) - -mydta[,,] - -lol <- list(structure(list(pair = c("BoneMarrow", "Pulmonary"), genes = "PRR11"), - .Names = c("pair", "genes")), - structure(list(pair = c("BoneMarrow", "Umbilical"), genes = "GNB2L1"), - .Names = c("pair", "genes")), - structure(list(pair = c("Pulmonary", "Umbilical"), genes = "ATP1B1"), .Names = c("pair","genes"))) - -lol[[1]]$pair -library(tidyverse) -map_dfr(lol, ~as_tibble(.) %>% - mutate(row=paste0("pair", row_number()))%>% - spread(row, pair) %>% - select(pair1, pair2, genes)) - - - - -#replicate(n=10,rnbinom(n = 1, mu = 50, size = 5)) -##test - -set.seed(1982) -N <- 6000 -M <- 1000 -K <- 2 -example_3d_array <- array(rnbinom(n = 1, mu = 50, size = 5), c(M, K)) -example_3d_array[,,2][3,] - -library("dplyr") -#system.time(expr = { - dimnames(example_3d_array) <- list("N" = sprintf("N%d", 1:N), - "M" = sprintf("M%d", 1:M), - "K" = sprintf("K%d", 1:K)) - example_3d_cube <- as.tbl_cube(example_3d_array) - example_2d_df <- as_tibble(example_3d_cube) -#} -#) - - - - #params - N_gene = 6000 - - - - ## function generator - rnbinom_generator <- function(n_gene, mu_simul, alpha){ - - my_counts <- rnbinom(n = n_gene, mu = mu_simul, size = alpha) - return(my_counts) - - } - - - - ## build my lib counts - env1_A <- rnbinom_generator(N_gene, 50, 5) - env1_B <- rnbinom_generator(N_gene, 50, 5) - - env2_A <- rnbinom_generator(N_gene, 100, 5) - env2_B <- rnbinom_generator(N_gene, 100, 5) - - - - ## export my lib count - names(env1_A) <- sprintf("gene%d", 1:N_gene) - names(env1_B) <- sprintf("gene%d", 1:N_gene) - - names(env2_A) <- sprintf("gene%d", 1:N_gene) - names(env2_B) <- sprintf("gene%d", 1:N_gene) - - env1_A %>% data.frame(.) %>% fwrite(., "~/mydatalocal/counts_simulation/results/env1_A.tsv", row.names = T, col.names = F, sep = "\t") - env2_A %>% data.frame(.) %>% fwrite(., "~/mydatalocal/counts_simulation/results/env2_A.tsv", row.names = T, col.names = F, sep = "\t") - env1_B %>% data.frame(.) %>% fwrite(., "~/mydatalocal/counts_simulation/results/env1_B.tsv", row.names = T, col.names = F, sep = "\t") - env2_B %>% data.frame(.) %>% fwrite(., "~/mydatalocal/counts_simulation/results/env2_B.tsv", row.names = T, col.names = F, sep = "\t") - - -