diff --git a/src/run_deseq.R b/src/run_deseq.R deleted file mode 100644 index 547a484514548f9c7c78f6374f6c6a25b3ede638..0000000000000000000000000000000000000000 --- a/src/run_deseq.R +++ /dev/null @@ -1,96 +0,0 @@ -library("DESeq2") - -directory <- "mydatalocal/counts_simulation/results/" - - -sampleFiles <- grep("*tsv",list.files(directory),value=TRUE) -sampleName <- sub("*.tsv","",sampleFiles) - -sampleName - -sampleCondition <- as.character(sampleName) -for (i in 1:length(sampleCondition)){ - sampleCondition[i] <- gsub("_[A-B]", "", sampleCondition[i]) -} - - -sampleCondition - -sampleTable <- data.frame(sampleName = sampleName, - fileName = sampleFiles, - condition = sampleCondition) -sampleTable -str(sampleTable) - -ddsInput <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable, - directory = directory, - design = ~ condition) - - - -dds <- DESeq(ddsInput) - -resultsNames(dds) - -resLFC <- lfcShrink(dds, coef=2, type="apeglm") -resLFC -# an alternate analysis: likelihood ratio test -ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1) -resLRT <- results(ddsLRT) -resLRT - - -dds$sizeFactor*(res$log2FoldChange) - -coef(dds) -coef(dds, SE=TRUE)[1,] - -dds <- estimateSizeFactors(dds) -dds$condition -head(counts(dds, normalized=TRUE)) - -resGA <- results(dds, contrast=c("condition","env1","env2"), lfcThreshold=.4, altHypothesis="greaterAbs") -table(resGA$padj < 0.05) - - - -########################" poUR ALLER CHERHCERH DES TRUC INTERESSANT -## simulation functions -source("mydatalocal/counts_simulation/src/simulators.R") - -var(rnbinom(10000, mu=1000, size=200)) - - -N_gene= 6000 -N_cond= 2 -N_rep= 2 - - -mtrx<-matrix_generator(1000, 2) -cond <- factor(rep(1:2, each=N_rep)) -dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond) - -# standard analysis -dds <- DESeq(dds, fitType='local') -res <- results(dds) - -mcols(dds,use.names=TRUE)[1:4,] -substr(names(mcols(dds)),1,10) -mcols(mcols(dds), use.names=TRUE)[1:4,] -assays(dds)[["mu"]] - -head(assays(dds)[["mu"]][which(res$padj<0.05),]) - -head(assays(dds)[["mu"]][which(res$padj>0.05),]) - -dispersions(dds) - -assays(dds)[["cooks"]][27,] - -sizeFactors(dds) -b =mcols(dds) -assays(dds)[["H"]] - - -alpha_sample = dispersions(dds) -