From c04e11cc7cd445c1a0b33c16b8e77ab985d9d870 Mon Sep 17 00:00:00 2001 From: Laurent Modolo <laurent.modolo@ens-lyon.fr> Date: Wed, 24 Aug 2022 10:51:00 +0200 Subject: [PATCH] add idr main function and fix warning in *.Rd --- NAMESPACE | 1 + R/main.R | 62 ++++++++++++++++++++++++---- R/plots.R | 4 +- R/pseudo_data.R | 14 +++++-- README.md | 54 ++++++++++++------------ man/compute_idr.Rd | 13 +++--- man/fit_mixture.Rd | 2 + man/gatherpairs.Rd | 4 +- man/idr.Rd | 45 ++++++++++++++++++++ man/mono_fit_mixture.Rd | 2 + man/mono_fit_mixture_arch.Rd | 4 +- man/prod_pseudo_copula_mixture.Rd | 2 +- man/prod_pseudo_marginal.Rd | 4 +- man/pseudo_compute_idr.Rd | 2 - man/pseudo_copula_mixture.Rd | 2 + man/pseudo_fit_marginal.Rd | 2 + man/pseudo_likelihood_fit_mixture.Rd | 4 ++ man/pseudo_local_idr.Rd | 2 + man/pseudo_rename_params.Rd | 2 + man/pseudo_rename_theta.Rd | 2 + man/pseudo_rename_weight.Rd | 2 + 21 files changed, 176 insertions(+), 53 deletions(-) create mode 100644 man/idr.Rd diff --git a/NAMESPACE b/NAMESPACE index e97a125..1fcdc7c 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -7,6 +7,7 @@ export(copula_mixture) export(copula_mixture_arch) export(fit_mixture) export(fixed_rank) +export(idr) export(idr_hist) export(is_idr) export(pairs_plot) diff --git a/R/main.R b/R/main.R index 25073d5..295e099 100644 --- a/R/main.R +++ b/R/main.R @@ -294,6 +294,7 @@ copula_mixture_arch <- function( #' @param optim_method (default: \code{mpl}) the fitting method #' @param prop (default: \code{1.}) faction of the data to use for estimation #' @param method (default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")} +#' @param estimate the results of \code{pseudo_likelihood_fit_mixture(data)} #' @param init (default: \code{c(copula_mixture_theta(samic), copula_mixture_weight(samic))}), starting set of parameters #' @return a \code{fitCopula} object of the \code{copula} package #' @examples @@ -328,7 +329,7 @@ mono_fit_mixture <- function(u, optim_method = "mpl", prop = 1., method = "arch" #' @param K a vector of IDR probability #' @param L a matrix of Archimedean copula mixture probabilities #' @param estimate a vector or mode parameters -#' @param optim method (default: \code{mpl}) the fitting method +#' @param optim_method (default: \code{mpl}) the fitting method #' @param prop (default: \code{1.}) faction of the data to use for estimation #' @param method (default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")} #' @return a \code{fitCopula} object of the \code{copula} package @@ -374,7 +375,6 @@ mono_fit_mixture_arch <- function(u, K, L, estimate, optim_method = "L-BFGS-B", #' @param data (default: \code{NULL}) a matrix of data values (with sample as column) #' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) #' @param optim_method (default: \code{mpl}) the fitting method -#' @param method (default: \code{mpl}) the fitting method #' @param thread (default: \code{1}) number of cpus to use for estimation #' @param skip_zero (default: \code{FALSE}) should the zeros contribute to #' the empirical cumulative distribution ? @@ -382,6 +382,7 @@ mono_fit_mixture_arch <- function(u, K, L, estimate, optim_method = "L-BFGS-B", #' between the rank and the rank + 1 #' @param prop (default: \code{1.}) faction of the data to use for estimation #' @param method (default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")} +#' @param estimate list of parameters values #' @param two_step (default: \code{F}) **experimental** alternative fitting procedure #' @return a \code{fitCopula} object of the \code{copula} package #' @examples @@ -534,8 +535,9 @@ two_step_fit_mixture <- function( #' Compte the IDR #' -#' @param data (default: \code{NULL}) a matrix of data values (with sample as column) -#' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) +#' @param data (default: \code{NULL}) a tibble of data values (with sample as column) +#' @param u (default: \code{NULL}) a matrix of rank values (with sample as +#' column) #' @param estimate the results of \code{fit_mixture(u)} #' @param thread (default: \code{1}) number of cpus to use for estimation #' @param skip_zero (default: \code{FALSE}) should the zeros contribute to @@ -556,8 +558,8 @@ two_step_fit_mixture <- function( #' @export compute_idr <- function( data = NULL, u = NULL, estimate = NULL, thread = 1, prop = 1., - skip_zero = F, randomize = F, method = "arch", two_step = F, - verbose = F) { + skip_zero = FALSE, randomize = FALSE, method = "arch", two_step = FALSE, + verbose = FALSE) { estimate = fit_mixture( data = data, thread = thread, prop = prop, skip_zero = skip_zero, randomize = randomize, method = method, two_step = two_step, estimate = estimate) @@ -587,4 +589,50 @@ compute_idr <- function( } - +#' Compte the IDR +#' +#' @param data (default: \code{NULL}) a matrix of data values (with sample as +#' column) +#' @param estimate the results of \code{pseudo_likelihood_fit_mixture(data)} +#' @param method (default: \code{"arch"}), use the samic or originial gaussian +#' model \code{c("arch", "gaussian", "emp")} +#' @param type (default: \code{"pseudo"}), perform classical IDR computation or +#' computation without the hypothesis that lower score are less reproducible +#' (for testing only) \code{c("pseudo", "direct")} +#' @param eps (default: \code{1e-3}), threshold of the precision of the +#' optimisation +#' @param verbose (default: \code{F}) print messages +#' @return a list of a vector of idr values of size \code{nrow(u)} and a list +#' of estimate values +#' @examples +#' \dontrun{ +#' idr(data) +#' } +#' @export +idr <- function(data = NULL, estimate = NULL, eps = 1e-3, method = "arch", + type = "pseudo", verbose = FALSE + ) { + if (type == "pseudo") { + return( + pseudo_compute_idr( + data = data, method = method, estimate = estimate, eps = eps, + verbose = verbose + ) + ) + } else { + return( + compute_idr( + data = data, + u = NULL, + estimate = NULL, + thread = 1, + prop = 1., + skip_zero = FALSE, + randomize = FALSE, + method = method, + two_step = FALSE, + verbose = verbose + ) + ) + } +} diff --git a/R/plots.R b/R/plots.R index 368ff9b..7ddd1a6 100644 --- a/R/plots.R +++ b/R/plots.R @@ -5,8 +5,8 @@ #' @param ... list of column to represent on 2 dimension 2 by 2 #' @param xkey name of the column for x names #' @param xvalue name of the column for x values -#' @param ykey name of the column for x names -#' @param yvalue name of the column for x values +#' @param ykey name of the column for x names @param yvalue name of the column for x values +#' @param yvalue name of the column for y values #' @param na.rm (default: \code{FALSE}) should \code{NA} values be removed #' @param convert If \code{TRUE} will automatically run \code{type.convert()} #' on the key column. This is useful if the column types are actually numeric, diff --git a/R/pseudo_data.R b/R/pseudo_data.R index 094f18c..4383572 100644 --- a/R/pseudo_data.R +++ b/R/pseudo_data.R @@ -157,6 +157,7 @@ pseudo_upper_bound_params <- function(method){ #' Helper function for \code{fit_mixture} function #' Return a named vector of values for parameters and weights #' for the models from a unnamed vectors +#' @param params named vector of model parameters #' @param method (default: \code{"arch"}), use the samic or originial gaussian model #' @return The sum of \code{x} and \code{y}. #' @examples @@ -187,6 +188,7 @@ pseudo_rename_params <- function(params, method = "arch") { #' Helper function for \code{fit_mixture} function #' Return a named vector of values for parameters #' for the models from a unnamed vectors +#' @param theta named vector of theta values #' @param method (default: \code{"arch"}), use the samic or originial gaussian model #' @return The sum of \code{x} and \code{y}. #' @examples @@ -216,6 +218,7 @@ pseudo_rename_theta <- function(theta, method = "arch") { #' Helper function for \code{fit_mixture} function #' Return a named vector of values for weights #' for the models from a unnamed vectors +#' @param weight named vector of weight values #' @param method (default: \code{"arch"}), use the samic or originial gaussian model #' @return The sum of \code{x} and \code{y}. #' @examples @@ -248,6 +251,7 @@ pseudo_rename_weight <- function(weight, method = "arche") { #' Helper function for \code{fit_mixture} and \code{compute_idr} function #' +#' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) #' @param theta (defaut: \code{copula_mixture_theta()} a named vector of theta #' values as generated by the \code{copula_mixture_theta()} function #' @param weight (defaut: \code{copula_mixture_weight()} a named vector of weight @@ -300,7 +304,7 @@ pseudo_copula_mixture <- function(u, theta = copula_mixture_theta(), #' @param L for \code{samic = T} a matrix of size \code{ncol(u) * 3} for archimean #' copula weight #' @param u a matrix of pseudo-rank -#' @param method (default: \code{"arch"}), use the samic or originial gaussian model +#' @param fn_method (default: \code{"arch"}), use the samic or originial gaussian model #' @return the log-likelihood of the copula mixture model given the data #' @examples #' \dontrun{ @@ -353,11 +357,12 @@ prod_pseudo_copula_mixture <- function( #' Helper function for \code{fit_mixture} and \code{compute_idr} function #' +#' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) #' @param params a named vector of variables model parameters #' @param estimate a named vector of all the model parameters #' @param K a vector of indep probability of size \code{ncol(z)} #' @param z a matrix of pseudo-values -#' @param method (default: \code{"arch"}), use the samic or originial gaussian model +#' @param fn_method (default: \code{"arch"}), use the samic or originial gaussian model #' @return the log-likelihood of the marginal mixture model given the data #' @examples #' \dontrun{ @@ -566,6 +571,7 @@ pseudo_proba_archs <- function( #' Helper function for \code{fit_mixture} and \code{compute_idr} function #' #' @param z a matrix of pseudo-values +#' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) #' @param K a vector of indep probability of size \code{ncol(z)} #' @param L for \code{samic = T} a matrix of size \code{ncol(z) * 3} for archimean #' copula weight @@ -758,6 +764,8 @@ qnorm_mix <- function(u, pmix = 0.5, mu = 4, sd1 = 1, sd2 = 1) { #' @param data (default: \code{NULL}) a matrix of data values (with sample as column) #' @param method (default: \code{"arch"}) use the samic or originial gaussian model #' @param eps (default: \code{1e-3}), threshold of the precision of the optimisation +#' @param fixed_estimate the results of \code{pseudo_likelihood_fit_mixture(data)} +#' @param verbose (default: \code{F}) print messages #' @return a \code{fitCopula} object of the \code{copula} package #' @examples #' \dontrun{ @@ -831,6 +839,7 @@ pseudo_likelihood_fit_mixture <- function( #' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) #' @param estimate the results of \code{fit_mixture(u)} #' @param method (default: \code{"arch"}), use the samic or originial gaussian model +#' @param verbose (default: \code{F}) print messages #' @return a vector of idr values of size \code{nrow(u)} #' @examples #' \dontrun{ @@ -865,7 +874,6 @@ pseudo_local_idr <- function( #' Compte the IDR #' #' @param data (default: \code{NULL}) a matrix of data values (with sample as column) -#' @param u (default: \code{NULL}) a matrix of rank values (with sample as column) #' @param estimate the results of \code{pseudo_likelihood_fit_mixture(data)} #' @param method (default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")} #' @param eps (default: \code{1e-3}), threshold of the precision of the optimisation diff --git a/README.md b/README.md index b4d80e5..4fee3d5 100644 --- a/README.md +++ b/README.md @@ -18,7 +18,7 @@ These instructions will get you a copy of the project up and running on your loc To run **midr** on your computer you need to have R (\>= 4.1.0) installed and the `devtools` package. -``` sh +```sh install.packages("remotes") ``` @@ -26,13 +26,13 @@ install.packages("remotes") To easily install **midr** on your computer using `devtools` run the following command: -``` r +```r remotes::install_git("https://gitbio.ens-lyon.fr/LBMC/sbdm/idr") ``` Check the vignette: -``` r +```r library(midr) devtools::build_vignettes("midr") browseVignettes("midr") @@ -42,29 +42,29 @@ browseVignettes("midr") The **idr** package depends on the following R library: -- `copula` (\>= 1.0-1), -- `rtracklayer` (\>= 1.54.0), -- `GenomicRanges` (\>= 1.46.1), -- `S4Vectors` (\>= 0.32.2), -- `dplyr` (\>= 1.0.7), -- `ggplot2` (\>= 3.3.5), -- `stringr` (\>= 1.4.0), -- `tibble` (\>= 3.1.6), -- `tidyr` (\>= 1.1.4), -- `purrr` (\>= 0.3.4), -- `tidyselect` (\>= 1.1.1), -- `parallel` (\>= 4.1.2), -- `GoFKernel` (\>= 2.1) +- `copula` (\>= 1.0-1), +- `rtracklayer` (\>= 1.54.0), +- `GenomicRanges` (\>= 1.46.1), +- `S4Vectors` (\>= 0.32.2), +- `dplyr` (\>= 1.0.7), +- `ggplot2` (\>= 3.3.5), +- `stringr` (\>= 1.4.0), +- `tibble` (\>= 3.1.6), +- `tidyr` (\>= 1.1.4), +- `purrr` (\>= 0.3.4), +- `tidyselect` (\>= 1.1.1), +- `parallel` (\>= 4.1.2), +- `GoFKernel` (\>= 2.1) ## Usage -**idr** Takes as input files in the [NarrowPeaks format](https://genome.ucsc.edu/FAQ/FAQformat.html#format12), and output NarrowPeaks files with an additional *idr* column. +**idr** Takes as input files in the [NarrowPeaks format](https://genome.ucsc.edu/FAQ/FAQformat.html#format12), and output NarrowPeaks files with an additional _idr_ column. -Computing *IDR* between three replicates +Computing _IDR_ between three replicates We can start with a matrix of values with the replicates as columns and the positions as rows or load bed files with the following command: -``` r +```r # load the initial data data <- bed_to_matrix( "merged_peak_calling.NarrowPeaks", @@ -78,36 +78,36 @@ Where `replicate1_.NarrowPeaks` is the output of the peak caller on the alignmen Then we can compute the IDR of each row with the following commands. -``` r +```r # compute the IDR -idr <- compute_idr(data, thread = 8) +idr <- idr(data) ``` -If you want to work under the hypothesis that lower values in your data are less reproducible than higher value you can use instead the `pseudo_compute_idr()` function. +If you don't want to work under the hypothesis that lower values in your data are less reproducible than higher value you can use instead the `type = "direct" option. -``` r +```r # compute the IDR -idr <- pseudo_compute_idr(data) +idr <- idr(data, type = "direct") ``` The default `samic = T` option use a flexible mixture of 3 Archimedean copula (Gumbel, Clayton and Frank), while the `samic = F` use a Gaussian copula model. To see the histogram of IDR at an `alpha` level: -``` r +```r idr_hist(idr, alpha = 0.05) ``` You can then display the results on the `data` or `u` space -``` r +```r pairs_plot(u, idr, alpha = 0.05) pairs_plot(data, idr, alpha = 0.05, scale_log = T) ``` ## Authors -- **Laurent Modolo** - *Initial work* +- **Laurent Modolo** - _Initial work_ ## License diff --git a/man/compute_idr.Rd b/man/compute_idr.Rd index fa383f7..35b1685 100644 --- a/man/compute_idr.Rd +++ b/man/compute_idr.Rd @@ -10,17 +10,18 @@ compute_idr( estimate = NULL, thread = 1, prop = 1, - skip_zero = F, - randomize = F, + skip_zero = FALSE, + randomize = FALSE, method = "arch", - two_step = F, - verbose = F + two_step = FALSE, + verbose = FALSE ) } \arguments{ -\item{data}{(default: \code{NULL}) a matrix of data values (with sample as column)} +\item{data}{(default: \code{NULL}) a tibble of data values (with sample as column)} -\item{u}{(default: \code{NULL}) a matrix of rank values (with sample as column)} +\item{u}{(default: \code{NULL}) a matrix of rank values (with sample as +column)} \item{estimate}{the results of \code{fit_mixture(u)}} diff --git a/man/fit_mixture.Rd b/man/fit_mixture.Rd index bee06f0..41a8629 100644 --- a/man/fit_mixture.Rd +++ b/man/fit_mixture.Rd @@ -42,6 +42,8 @@ between the rank and the rank + 1} \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")}} \item{two_step}{(default: \code{F}) **experimental** alternative fitting procedure} + +\item{estimate}{list of parameters values} } \value{ a \code{fitCopula} object of the \code{copula} package diff --git a/man/gatherpairs.Rd b/man/gatherpairs.Rd index 8bc3a1b..21c410f 100644 --- a/man/gatherpairs.Rd +++ b/man/gatherpairs.Rd @@ -26,9 +26,9 @@ gatherpairs( \item{xvalue}{name of the column for x values} -\item{ykey}{name of the column for x names} +\item{ykey}{name of the column for x names @param yvalue name of the column for x values} -\item{yvalue}{name of the column for x values} +\item{yvalue}{name of the column for y values} \item{na.rm}{(default: \code{FALSE}) should \code{NA} values be removed} diff --git a/man/idr.Rd b/man/idr.Rd new file mode 100644 index 0000000..12c112a --- /dev/null +++ b/man/idr.Rd @@ -0,0 +1,45 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/main.R +\name{idr} +\alias{idr} +\title{Compte the IDR} +\usage{ +idr( + data = NULL, + estimate = NULL, + eps = 0.001, + method = "arch", + type = "pseudo", + verbose = FALSE +) +} +\arguments{ +\item{data}{(default: \code{NULL}) a matrix of data values (with sample as +column)} + +\item{estimate}{the results of \code{pseudo_likelihood_fit_mixture(data)}} + +\item{eps}{(default: \code{1e-3}), threshold of the precision of the +optimisation} + +\item{method}{(default: \code{"arch"}), use the samic or originial gaussian +model \code{c("arch", "gaussian", "emp")}} + +\item{type}{(default: \code{"pseudo"}), perform classical IDR computation or +computation without the hypothesis that lower score are less reproducible +(for testing only) \code{c("pseudo", "direct")}} + +\item{verbose}{(default: \code{F}) print messages} +} +\value{ +a list of a vector of idr values of size \code{nrow(u)} and a list +of estimate values +} +\description{ +Compte the IDR +} +\examples{ +\dontrun{ +idr(data) +} +} diff --git a/man/mono_fit_mixture.Rd b/man/mono_fit_mixture.Rd index f1ce9c7..9583307 100644 --- a/man/mono_fit_mixture.Rd +++ b/man/mono_fit_mixture.Rd @@ -27,6 +27,8 @@ mono_fit_mixture( \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")}} +\item{estimate}{the results of \code{pseudo_likelihood_fit_mixture(data)}} + \item{init}{(default: \code{c(copula_mixture_theta(samic), copula_mixture_weight(samic))}), starting set of parameters} } \value{ diff --git a/man/mono_fit_mixture_arch.Rd b/man/mono_fit_mixture_arch.Rd index ced8ee3..54bd5f5 100644 --- a/man/mono_fit_mixture_arch.Rd +++ b/man/mono_fit_mixture_arch.Rd @@ -28,11 +28,11 @@ mono_fit_mixture_arch( \item{estimate}{a vector or mode parameters} +\item{optim_method}{(default: \code{mpl}) the fitting method} + \item{prop}{(default: \code{1.}) faction of the data to use for estimation} \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")}} - -\item{optim}{method (default: \code{mpl}) the fitting method} } \value{ a \code{fitCopula} object of the \code{copula} package diff --git a/man/prod_pseudo_copula_mixture.Rd b/man/prod_pseudo_copula_mixture.Rd index 6d3b11e..83863ae 100644 --- a/man/prod_pseudo_copula_mixture.Rd +++ b/man/prod_pseudo_copula_mixture.Rd @@ -18,7 +18,7 @@ copula weight} \item{u}{a matrix of pseudo-rank} -\item{method}{(default: \code{"arch"}), use the samic or originial gaussian model} +\item{fn_method}{(default: \code{"arch"}), use the samic or originial gaussian model} } \value{ the log-likelihood of the copula mixture model given the data diff --git a/man/prod_pseudo_marginal.Rd b/man/prod_pseudo_marginal.Rd index d5d9e00..cd8c15c 100644 --- a/man/prod_pseudo_marginal.Rd +++ b/man/prod_pseudo_marginal.Rd @@ -7,6 +7,8 @@ prod_pseudo_marginal(u, params, estimate, K, z, fn_method = "arch") } \arguments{ +\item{u}{(default: \code{NULL}) a matrix of rank values (with sample as column)} + \item{params}{a named vector of variables model parameters} \item{estimate}{a named vector of all the model parameters} @@ -15,7 +17,7 @@ prod_pseudo_marginal(u, params, estimate, K, z, fn_method = "arch") \item{z}{a matrix of pseudo-values} -\item{method}{(default: \code{"arch"}), use the samic or originial gaussian model} +\item{fn_method}{(default: \code{"arch"}), use the samic or originial gaussian model} } \value{ the log-likelihood of the marginal mixture model given the data diff --git a/man/pseudo_compute_idr.Rd b/man/pseudo_compute_idr.Rd index 3a671e5..b891de5 100644 --- a/man/pseudo_compute_idr.Rd +++ b/man/pseudo_compute_idr.Rd @@ -22,8 +22,6 @@ pseudo_compute_idr( \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model \code{c("arch", "gaussian", "emp")}} \item{verbose}{(default: \code{F}) print messages} - -\item{u}{(default: \code{NULL}) a matrix of rank values (with sample as column)} } \value{ a list of a vector of idr values of size \code{nrow(u)} and a list of estimate values diff --git a/man/pseudo_copula_mixture.Rd b/man/pseudo_copula_mixture.Rd index c4cafcb..f303099 100644 --- a/man/pseudo_copula_mixture.Rd +++ b/man/pseudo_copula_mixture.Rd @@ -13,6 +13,8 @@ pseudo_copula_mixture( ) } \arguments{ +\item{u}{(default: \code{NULL}) a matrix of rank values (with sample as column)} + \item{theta}{(defaut: \code{copula_mixture_theta()} a named vector of theta values as generated by the \code{copula_mixture_theta()} function} diff --git a/man/pseudo_fit_marginal.Rd b/man/pseudo_fit_marginal.Rd index d0cb7a2..abfaa9b 100644 --- a/man/pseudo_fit_marginal.Rd +++ b/man/pseudo_fit_marginal.Rd @@ -18,6 +18,8 @@ pseudo_fit_marginal( \arguments{ \item{z}{a matrix of pseudo-values} +\item{u}{(default: \code{NULL}) a matrix of rank values (with sample as column)} + \item{K}{a vector of indep probability of size \code{ncol(z)}} \item{L}{for \code{samic = T} a matrix of size \code{ncol(z) * 3} for archimean diff --git a/man/pseudo_likelihood_fit_mixture.Rd b/man/pseudo_likelihood_fit_mixture.Rd index e74ec90..77d4849 100644 --- a/man/pseudo_likelihood_fit_mixture.Rd +++ b/man/pseudo_likelihood_fit_mixture.Rd @@ -24,6 +24,10 @@ pseudo_likelihood_fit_mixture( \item{method}{(default: \code{"arch"}) use the samic or originial gaussian model} \item{eps}{(default: \code{1e-3}), threshold of the precision of the optimisation} + +\item{fixed_estimate}{the results of \code{pseudo_likelihood_fit_mixture(data)}} + +\item{verbose}{(default: \code{F}) print messages} } \value{ a \code{fitCopula} object of the \code{copula} package diff --git a/man/pseudo_local_idr.Rd b/man/pseudo_local_idr.Rd index c469815..ecb95b6 100644 --- a/man/pseudo_local_idr.Rd +++ b/man/pseudo_local_idr.Rd @@ -12,6 +12,8 @@ pseudo_local_idr(u = NULL, estimate = NULL, method = "arch", verbose = F) \item{estimate}{the results of \code{fit_mixture(u)}} \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model} + +\item{verbose}{(default: \code{F}) print messages} } \value{ a vector of idr values of size \code{nrow(u)} diff --git a/man/pseudo_rename_params.Rd b/man/pseudo_rename_params.Rd index 69bbed4..de2104e 100644 --- a/man/pseudo_rename_params.Rd +++ b/man/pseudo_rename_params.Rd @@ -9,6 +9,8 @@ for the models from a unnamed vectors} pseudo_rename_params(params, method = "arch") } \arguments{ +\item{params}{named vector of model parameters} + \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model} } \value{ diff --git a/man/pseudo_rename_theta.Rd b/man/pseudo_rename_theta.Rd index 655f530..9fe3161 100644 --- a/man/pseudo_rename_theta.Rd +++ b/man/pseudo_rename_theta.Rd @@ -9,6 +9,8 @@ for the models from a unnamed vectors} pseudo_rename_theta(theta, method = "arch") } \arguments{ +\item{theta}{named vector of theta values} + \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model} } \value{ diff --git a/man/pseudo_rename_weight.Rd b/man/pseudo_rename_weight.Rd index 7447fcb..a0974ad 100644 --- a/man/pseudo_rename_weight.Rd +++ b/man/pseudo_rename_weight.Rd @@ -9,6 +9,8 @@ for the models from a unnamed vectors} pseudo_rename_weight(weight, method = "arche") } \arguments{ +\item{weight}{named vector of weight values} + \item{method}{(default: \code{"arch"}), use the samic or originial gaussian model} } \value{ -- GitLab