diff --git a/src/find_interaction_cluster/nt_and_community.py b/src/find_interaction_cluster/nt_and_community.py
index 07d5e40e7701ac40d133061a0cf9857afc0cbbbe..a96e351303428e77a41660cc7ec31e0c7b0ac4c7 100644
--- a/src/find_interaction_cluster/nt_and_community.py
+++ b/src/find_interaction_cluster/nt_and_community.py
@@ -152,7 +152,6 @@ def lmm_maker_summary(df: pd.DataFrame, outfile: Path, nt: str
     :param outfile: A name of a file
     :param nt: the nucleotide of interest
     :return: the pvalue of lmm
-
     """
     pandas2ri.activate()
     lmm = r(
@@ -222,7 +221,8 @@ def create_ctrl_community(df: pd.DataFrame,
 
 
 def lmm_with_ctrl(df: pd.DataFrame, feature: str, region: str,
-                  nt: str, outfile_diag: Path) -> pd.DataFrame:
+                  nt: str, outfile_diag: Path
+                  ) -> Tuple[pd.DataFrame, pd.DataFrame]:
     """
 
     :param df: df: A dataframe containing the frequency of each nucleotide \
@@ -232,11 +232,12 @@ def lmm_with_ctrl(df: pd.DataFrame, feature: str, region: str,
     :param nt: The nucleotide of interest
     :param outfile_diag: File from which the diagnostics folder will be \
     inferred
-    :return: The dataframe with the p-value compared to the control \
-    list of exons.
+    :return: The dataframe with ctrl exon and \
+    The dataframe with the p-value compared to the control \
+    list of feature.
     """
     ndf = create_ctrl_community(df, feature, region)
-    return lmm_maker_summary(ndf, outfile_diag, nt)
+    return ndf, lmm_maker_summary(ndf, outfile_diag, nt)
 
 
 def get_feature_by_community(df: pd.DataFrame, feature: str) -> Dict:
@@ -418,24 +419,78 @@ def make_barplot(df_bar: pd.DataFrame, outfile: Path, nt: str, test_type: str,
     sns.set()
     test_name = "permutation" if test_type == "perm" else "lmm"
     g = sns.catplot(x="community", y=nt, data=df_bar, kind="bar",
-                    ci="sd", aspect=2.5, height=12,
-                    palette=["red"] + ["grey"] * (df_bar.shape[0] - 1))
+                    ci="sd", aspect=2.5, height=12, errwidth=0.5, capsize=.4,
+                    palette=["red"] + ["lightgray"] * (df_bar.shape[0] - 1))
     g.fig.suptitle(f"Mean frequency of {nt} among community of {feature}s\n"
                    f"(stats obtained with as {test_name} test)")
     g.set(xticklabels=[])
     g.ax.set_ylabel(f'Frequency of {nt}')
-    if test_type == "perm":
-        df_bar = df_bar.drop_duplicates(subset="community", keep="last")
+    df_bara = df_bar.drop_duplicates(subset="community", keep="first")
     for i, p in enumerate(g.ax.patches):
-        stats = "*" if df_bar.iloc[i, :]["p-adj"] < 0.05 else ""
-        print(i, stats, df_bar.iloc[i, :]["p-adj"])
+        stats = "*" if df_bara.iloc[i, :]["p-adj"] < 0.05 else ""
+        com = df_bara.iloc[i, :]["community"]
+        csd = np.std(df_bar.loc[df_bar["community"] == com, nt])
         g.ax.annotate(stats,
-                      (p.get_x() + p.get_width() / 2., p.get_height()),
+                      (p.get_x() + p.get_width() / 2., p.get_height() + csd),
                       ha='center', va='center', xytext=(0, 10),
                       textcoords='offset points')
     g.savefig(outfile)
 
 
+def expand_results_lmm(df: pd.DataFrame, rdf: pd.DataFrame,
+                       nt: str, feature: str) -> pd.DataFrame:
+    """
+    Merge df and rdf together.
+
+    :param df: A dataframe containing the frequency of each nucleotide \
+    in each feature belonging to a community.
+    :param rdf: The dataframe containing the mean frequency for \
+    each community and the p-value of their enrichment compared to control \
+    exons.
+    :param nt: the nucleotide of interest
+    :param feature: The feature of interest
+    :return: The merged dataframe: i.e df with the stats columns
+    """
+    p_col = "Pr(>|t|)"
+    df = df[[f"id_{feature}", nt, "community", "community_size"]].copy()
+    rdf = rdf[["community", "community_size", p_col, nt]].copy()
+    rdf.rename({nt: f"mean_{nt}", p_col: "p-adj"}, axis=1, inplace=True)
+    df = df.merge(rdf, how="left", on=["community", "community_size"])
+    df_ctrl = df[df["community"] == "C-CTRL"]
+    df = df[df["community"] != "C-CTRL"].copy()
+    df.sort_values(f"mean_{nt}", ascending=True, inplace=True)
+    return pd.concat([df_ctrl, df], axis=0, ignore_index=True)
+
+
+def expand_results_perm(df: pd.DataFrame, rdf: pd.DataFrame,
+                        nt: str, feature: str, iteration: int) -> pd.DataFrame:
+    """
+    Merge df and rdf together.
+
+    :param df: A dataframe containing the frequency of each nucleotide \
+    in each feature belonging to a community.
+    :param rdf: The dataframe containing the mean frequency for \
+    each community and the p-value of their enrichment compared to control \
+    exons.
+    :param nt: the nucleotide of interest
+    :param feature: The feature of interest
+    :param iteration: The number of iteration
+    :return: The merged dataframe: i.e df with the stats columns
+    """
+    df = df[[f"id_{feature}", nt, "community", "community_size"]].copy()
+    ctrl_val = rdf[f"{nt}_mean_{iteration}_ctrl"]
+    rdf = rdf[["community", "community_size", nt, "p-adj"]].copy()
+    rdf.rename({nt: f"mean_{nt}"}, axis=1, inplace=True)
+    df = df.merge(rdf, how="left", on=["community", "community_size"])
+    df_ctrl = pd.DataFrame({nt: ctrl_val,
+                            f"mean_{nt}": [np.mean(ctrl_val)] * len(ctrl_val),
+                            f"id_{feature}": ['ctrl'] * len(ctrl_val),
+                            "community_size": [len(ctrl_val)] * len(ctrl_val),
+                            "community": ["C-CTRL"] * len(ctrl_val)})
+    df.sort_values(f"mean_{nt}", ascending=True, inplace=True)
+    return pd.concat([df_ctrl, df], axis=0, ignore_index=True)
+
+
 def create_and_save_ctrl_dataframe(df: pd.DataFrame, feature: str,
                                    region: str, nt: str, outfile: Path,
                                    test_type: str, df_ctrl: pd.DataFrame,
@@ -461,32 +516,34 @@ def create_and_save_ctrl_dataframe(df: pd.DataFrame, feature: str,
     containing the test communities and the control community
     """
     if test_type == "lmm":
-        rdf = lmm_with_ctrl(df, feature, region, nt,
-                            outfile.parents[1] / outfile.name)
+        ndf, rdf = lmm_with_ctrl(df, feature, region, nt,
+                                 outfile.parents[1] / outfile.name)
+        df_bar = expand_results_lmm(ndf, rdf, nt, feature)
     else:
         rdf = perm_with_ctrl(df, feature, nt, df_ctrl, dic_com, iteration)
+        df_bar = expand_results_perm(df, rdf, nt, feature, iteration)
     rdf.to_csv(outfile_ctrl, sep="\t", index=False)
-    barplot_creation(rdf, outfile_ctrl, nt,
-                     test_type, feature, iteration)
+    barplot_creation(df_bar, outfile_ctrl, nt,
+                     test_type, feature)
 
 
-def barplot_creation(rdf: pd.DataFrame, outfile: Path, nt: str,
-                     test_type: str, feature: str, iteration: int) -> None:
+def barplot_creation(df_bar: pd.DataFrame, outfile: Path, nt: str,
+                     test_type: str, feature: str) -> None:
     """
     Reformat a dataframe with the enrichment of a nucleotide frequency \
-    for every community and then create a barplot showing those frequencies.
+    for every feature for every community and then create a \
+    barplot showing those frequencies.
 
-    :param rdf: A dataframe with the enrichment of a \
-    nucleotide frequency for every community
+    :param df_bar: A dataframe with the enrichment of a \
+    nucleotide frequency for every community and showing the frequency \
+    of each feature in each community
     :param outfile: File were rdf is stored
     :param nt: The nucleotide for which we are seeking enrichment
     :param test_type: The kind of test make
     :param feature: The king of feature of interest
-    :param iteration: The number of sub samples to create
     """
-    rdf = prepare_dataframe(rdf, test_type, nt, iteration)
     outfig = outfile.parent / outfile.name.replace(".txt", ".pdf")
-    make_barplot(rdf, outfig, nt, test_type, feature)
+    make_barplot(df_bar, outfig, nt, test_type, feature)
 
 
 def create_outfiles(project: str, weight: int, global_weight: int,