diff --git a/src/find_interaction_cluster/community_figures/__main__.py b/src/find_interaction_cluster/community_figures/__main__.py
index 7cef8dd4ac65fccb0d7296154482de8f1822c3dd..e01081b74bdc737a8ddba3584afa4dc77cfbe615 100644
--- a/src/find_interaction_cluster/community_figures/__main__.py
+++ b/src/find_interaction_cluster/community_figures/__main__.py
@@ -49,11 +49,11 @@ def load_and_check_table(table: str, feature: str, target_col: str):
     return df
 
 
-@lp.parse(table="file", output="folder", test_type=["lm", "permutation"],
-          iteration="20 < iteration")
+@lp.parse(table="file", test_type=["lm", "permutation"],
+          iteration="20 < iteration", sd_community = ["y", "n", "Y", "N"])
 def create_community_figures(table: str, feature: str, target_col: str,
                              output: str, outfile: str, test_type: str,
-                             target_kind: str = "",
+                             target_kind: str = "", sd_community: str = "y",
                              iteration: int = 10000) -> None:
     """
     Create a dataframe with a control community, save it as a table and \
@@ -73,13 +73,17 @@ def create_community_figures(table: str, feature: str, target_col: str,
     target_col.
     :param iteration: The number of sub samples to create. This parameter \
     is only used if test_type = 'permutation' (default 10000).
+    :param sd_community: y to display the standard deviation for communities \
+    false else.
     """
     df = load_and_check_table(table, feature, target_col)
     if not outfile.endswith(".pdf"):
         raise FileNameError("The output figure must be in pdf format !")
     moutfile = Path(output) / outfile
+    sd_community = sd_community.lower() == 'y'
     create_community_fig(df, feature, target_col, moutfile, test_type,
-                         target_kind=target_kind, iteration=iteration)
+                         target_kind=target_kind, iteration=iteration,
+                         sd_community=sd_community)
 
 
 if __name__ == "__main__":
diff --git a/src/find_interaction_cluster/community_figures/fig_functions.py b/src/find_interaction_cluster/community_figures/fig_functions.py
index 124bf0db76fd59256cf69caf18cfedf6d497548b..20747cae31f8df8677c4f55bb701387f6bbc9dea 100644
--- a/src/find_interaction_cluster/community_figures/fig_functions.py
+++ b/src/find_interaction_cluster/community_figures/fig_functions.py
@@ -315,7 +315,8 @@ def expand_results_perm(df: pd.DataFrame, rdf: pd.DataFrame, target_col: str,
 
 
 def make_barplot(df_bar: pd.DataFrame, outfile: Path,
-                 target_col: str, feature: str, target_kind: str = "") -> None:
+                 target_col: str, feature: str, target_kind: str = "",
+                 sd_community: Optional[str] = "sd") -> None:
     """
     Create a barplot showing the frequency of `nt` for every community \
     of exons/gene in `df_bar`.
@@ -327,11 +328,13 @@ def make_barplot(df_bar: pd.DataFrame, outfile: Path,
     target_col.
     :param target_col: The name of the column containing the data of interest
     :param feature: The king of feature of interest
+    :param sd_community: sd to display community error bar, None to display \
+    nothing
     """
     sns.set(context="poster")
     g = sns.catplot(x="community", y=target_col, data=df_bar, kind="point",
-                    ci="sd", aspect=2.5, height=14, errwidth=0.5, capsize=.4,
-                    scale=0.5,
+                    ci=sd_community, aspect=2.5, height=14, errwidth=0.5,
+                    capsize=.4, scale=0.5,
                     palette=["red"] + ["darkgray"] * (df_bar.shape[0] - 1))
     g2 = sns.catplot(x="community", y=target_col, data=df_bar, kind="bar",
                      ci="sd", aspect=2.5, height=14, errwidth=0.5, capsize=.4,
@@ -347,7 +350,9 @@ def make_barplot(df_bar: pd.DataFrame, outfile: Path,
     for i, p in enumerate(g2.ax.patches):
         stats = "*" if df_bara.iloc[i, :]["p-adj"] < 0.05 else ""
         com = df_bara.iloc[i, :]["community"]
-        csd = np.std(df_bar.loc[df_bar["community"] == com, target_col])
+        csd = 0
+        if sd_community == "sd":
+            csd = np.std(df_bar.loc[df_bar["community"] == com, target_col])
         g.ax.annotate(stats,
                       (p.get_x() + p.get_width() / 2., p.get_height() + csd),
                       ha='center', va='center', xytext=(0, 10), fontsize=12,
@@ -357,7 +362,8 @@ def make_barplot(df_bar: pd.DataFrame, outfile: Path,
 
 def make_barplot_perm(df_bar: pd.DataFrame, outfile: Path,
                       target_col: str, feature: str,
-                      target_kind: str = "") -> None:
+                      target_kind: str = "",
+                      sd_community: Optional[str] = "sd") -> None:
     """
     Create a barplot showing the frequency of `nt` for every community \
     of exons/gene in `df_bar`.
@@ -369,6 +375,8 @@ def make_barplot_perm(df_bar: pd.DataFrame, outfile: Path,
     target_col.
     :param target_col: The name of the column containing the data of interest
     :param feature: The king of feature of interest
+    :param sd_community: sd to display community error bar, None to display \
+    nothing
     """
     sns.set(context="poster")
     df_ctrl = df_bar.loc[df_bar[f"id_{feature}"] == 'ctrl', :]
@@ -377,13 +385,17 @@ def make_barplot_perm(df_bar: pd.DataFrame, outfile: Path,
                      ci="sd", aspect=2.5, height=14, errwidth=0.5, capsize=.4,
                      palette=["darkgray"] * (df_bar.shape[0]))
     g = sns.catplot(x="community", y=target_col, data=df_bar, kind="point",
-                    ci="sd", aspect=2.5, height=14, errwidth=0.5, capsize=.4,
-                    scale=0.5, palette=["darkgray"] * (df_bar.shape[0]))
+                    ci=sd_community, aspect=2.5, height=14, errwidth=0.5,
+                    capsize=.4, scale=0.5,
+                    palette=["darkgray"] * (df_bar.shape[0]))
     xrange = g.ax.get_xlim()
+    yrange = g.ax.get_ylim()
     df_ctrl.plot(x="community", y=target_col, kind="scatter", ax=g.ax,
                  yerr="ctrl_std", legend=False, zorder=10,
                  color=(0.8, 0.2, 0.2, 0.4))
     g.ax.set_xlim(xrange)
+    if sd_community is None:
+        g.ax.set_ylim(yrange)
     g.fig.subplots_adjust(top=0.9)
     target_kind = f" ({target_kind})" if target_kind else ""
     g.fig.suptitle(f"Mean frequency of {target_col}{target_kind}"
@@ -395,7 +407,9 @@ def make_barplot_perm(df_bar: pd.DataFrame, outfile: Path,
     for i, p in enumerate(g2.ax.patches):
         stats = "*" if df_bara.iloc[i, :]["p-adj"] < 0.05 else ""
         com = df_bara.iloc[i, :]["community"]
-        csd = np.std(df_bar.loc[df_bar["community"] == com, target_col])
+        csd = 0
+        if sd_community == "sd":
+            csd = np.std(df_bar.loc[df_bar["community"] == com, target_col])
         g.ax.annotate(stats,
                       (p.get_x() + p.get_width() / 2., p.get_height() + csd),
                       ha='center', va='center', xytext=(0, 10), fontsize=12,
@@ -405,7 +419,7 @@ def make_barplot_perm(df_bar: pd.DataFrame, outfile: Path,
 
 def barplot_creation(df_bar: pd.DataFrame, outfig: Path,
                      cpnt: str, test_type: str, feature: str,
-                     target_kind) -> None:
+                     target_kind: str, sd_community: bool) -> None:
     """
     Reformat a dataframe with the enrichment of a nucleotide frequency \
     for every feature for every community and then create a \
@@ -421,11 +435,15 @@ def barplot_creation(df_bar: pd.DataFrame, outfig: Path,
     :param test_type: The type of test to make (permutation or lm)
     :param target_kind: An optional name that describe a bit further \
     target_col.
+    :param sd_community: True to display the errors bars for communities,
+    False else.
     """
+    sd_community = "sd" if sd_community else None
     if test_type == "lm":
         make_barplot(df_bar, outfig, cpnt, feature, target_kind)
     else:
-        make_barplot_perm(df_bar, outfig, cpnt, feature, target_kind)
+        make_barplot_perm(df_bar, outfig, cpnt, feature, target_kind,
+                          sd_community)
 
 
 def get_feature_by_community(df: pd.DataFrame, feature: str) -> Dict:
@@ -461,7 +479,8 @@ def create_community_fig(df: pd.DataFrame, feature: str,
                          outfile_ctrl: Path, test_type: str,
                          dic_com: Optional[Dict] = None,
                          target_kind: str = "",
-                         iteration: int = 10000) -> None:
+                         iteration: int = 10000,
+                         sd_community: bool = True) -> None:
     """
     Create a dataframe with a control community, save it as a table and \
     as a barplot figure.
@@ -480,6 +499,8 @@ def create_community_fig(df: pd.DataFrame, feature: str,
     :param target_kind: An optional name that describe a bit further \
     target_col.
     :param iteration: The number of sub samples to create
+    :param sd_community: True to display the errors bars for communities,
+    False else.
     """
     if dic_com is None:
         dic_com = {} if test_type == 'lm' \
@@ -495,4 +516,4 @@ def create_community_fig(df: pd.DataFrame, feature: str,
     bar_outfile = str(outfile_ctrl).replace(".pdf", "_bar.txt")
     df_bar.to_csv(bar_outfile, sep="\t", index=False)
     barplot_creation(df_bar, outfile_ctrl, target_col, test_type, feature,
-                     target_kind)
+                     target_kind, sd_community)
diff --git a/src/nt_composition/__main__.py b/src/nt_composition/__main__.py
index 8948a419cae14906965339c7d97260551c1f709e..9b0bd1187bf4a50fead22fe6f52938920a4ca6f7 100644
--- a/src/nt_composition/__main__.py
+++ b/src/nt_composition/__main__.py
@@ -22,6 +22,7 @@ def launcher(weight: int = 1, global_weight: int = 0, ft_type: str = 'nt',
              same_gene: bool = False, compute_mean: bool = True,
              iteration: int = 10000, kind: str = 'density',
              community_size: int = -1, inter_chr: bool = False,
+             level: str = "exon",
              logging_level: str = "DISABLE"):
     """
     Launch the creation of density file.
@@ -48,6 +49,7 @@ def launcher(weight: int = 1, global_weight: int = 0, ft_type: str = 'nt',
     than community size. if community_size = -1. This option is deactivated.
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else (default: False)
+    :param level: The kind of feature to analyse (exon or gene)
     :param logging_level: The level of data to display (default 'DISABLE')
     """
     get_interactions_number(weight, same_gene, inter_chr, logging_level)
@@ -56,12 +58,12 @@ def launcher(weight: int = 1, global_weight: int = 0, ft_type: str = 'nt',
     if kind == "density":
         create_all_frequency_figures(ConfigNt.cpu, weight, global_weight,
                                      ft_type, same_gene, compute_mean,
-                                     community_size, inter_chr,
+                                     community_size, inter_chr, level,
                                      logging_level)
     else:
         create_all_distance_figures(ConfigNt.cpu, weight, global_weight,
                                     ft_type, same_gene, iteration, inter_chr,
-                                    logging_level)
+                                    level, logging_level)
 
 
 launcher()
\ No newline at end of file
diff --git a/src/nt_composition/distance.py b/src/nt_composition/distance.py
index 5ec3ebdbc1b0695e8f98cfcd80c5a3ed9a9b5e40..41c64c12bc0406061ecaa39c18b05b25f3f6b800 100644
--- a/src/nt_composition/distance.py
+++ b/src/nt_composition/distance.py
@@ -123,7 +123,11 @@ def compute_mean_distance(arr_interaction: np.array,
     #                          for exon1, exon2 in arr_interaction]))
     res = []
     for exon1, exon2 in arr_interaction:
-        if exon1 != exon2:
+        if (
+            exon1 != exon2
+            and dic_freq[exon1] is not None
+            and dic_freq[exon2] is not None
+        ):
             val = abs(dic_freq[exon1] - dic_freq[exon2])
             res.append(val)
     return float(np.nanmean(res))
@@ -204,7 +208,7 @@ def create_distance_table(arr_interaction: np.array,
     """
     dic = {"iteration": [], 'kind': [], 'distance': [], 'coloc': []}
 
-    #  Add ctrl distance to the dictionary
+    # Add ctrl distance to the dictionary
     ctrl_distance, nb_int = compute_controls_distances(arr_interaction, dic_freq,
                                                        iteration)
     for k, d in enumerate(ctrl_distance):
@@ -223,7 +227,7 @@ def create_distance_table(arr_interaction: np.array,
 
 
 def create_distance_figure(df: pd.DataFrame, project: str, figfile: Path,
-                           ft: str, iteration: int):
+                           ft: str, iteration: int, level: str):
     """
     Create a barplot figure showing the nucleotide distance between \
     co-localised exons in a ChIA-PET project and what this distance would be \
@@ -234,6 +238,7 @@ def create_distance_figure(df: pd.DataFrame, project: str, figfile: Path,
     :param figfile: The file where the figure will be created
     :param ft: The feature of interest
     :param iteration: Number of iteration
+    :param level: The kind of feature to analyse (exon or gene)
     """
     sns.set(context='talk')
     pval = df.loc[-df['kind'].isin(['CTRL', project]), 'kind'].values[0]
@@ -245,7 +250,7 @@ def create_distance_figure(df: pd.DataFrame, project: str, figfile: Path,
                         loc='inside', box_pair_list=[['CTRL', project, pval]],
                         linewidth=2, min_pval=1/iteration)
     plt.title(f"Difference of {ft} frequency distance between "
-              f"co-localized exons and\nthe one of those same exons "
+              f"co-localized {level} and\nthe one of those same {level} "
               f"if the co-localisation where random ({iteration} "
               f"samples).")
     g.savefig(figfile)
@@ -255,7 +260,7 @@ def create_distance_figure(df: pd.DataFrame, project: str, figfile: Path,
 def create_figures(ft: str, ft_type: str,
                    project: str, weight: int, global_weight: int,
                    same_gene: bool, iteration: int, inter_chr: bool = False,
-                   logging_level: str = "DISABLE"
+                   level: str = "exon", logging_level: str = "DISABLE"
                    ) -> None:
     """
     Create a distance figure for the project `project` for the nucleotide \
@@ -274,6 +279,7 @@ def create_figures(ft: str, ft_type: str,
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
     :param logging_level: The level of information to display
+    :param level: The kind of feature to analyse (exon or gene)
     :param iteration: The number of iteration
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
@@ -285,8 +291,9 @@ def create_figures(ft: str, ft_type: str,
         cnx = sqlite3.connect(ConfigNt.db_file)
         arr_interaction = get_project_colocalisation(cnx, project, weight,
                                                      global_weight, same_gene,
-                                                     inter_chr=inter_chr)
-        dic_freq = get_frequency_dic(cnx, ft, ft_type)
+                                                     inter_chr=inter_chr,
+                                                     level=level)
+        dic_freq = get_frequency_dic(cnx, ft, ft_type, level)
         df = create_distance_table(arr_interaction, dic_freq, project,
                                    iteration, ft, ft_type)
         df.to_csv(outfile, sep="\t", index=False)
@@ -294,7 +301,7 @@ def create_figures(ft: str, ft_type: str,
                                             ft_type, ft, fig=True,
                                             kind="distance",
                                             inter_chr=inter_chr)
-        create_distance_figure(df, project, figfile, ft, iteration)
+        create_distance_figure(df, project, figfile, ft, iteration, level)
 
 
 def execute_density_figure_function(project: str,
@@ -302,7 +309,8 @@ def execute_density_figure_function(project: str,
                                     global_weight: int,
                                     same_gene: bool,
                                     iteration: int,
-                                    inter_chr: bool = False) -> None:
+                                    inter_chr: bool = False,
+                                    level: str = "exon") -> None:
     """
     Execute create_density_figure and organized the results in a dictionary.
 
@@ -320,17 +328,18 @@ def execute_density_figure_function(project: str,
     the control set.
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
+    :param level: The kind of feature to analyse (exon or gene)
     """
     logging.info(f'Working on {project}, {ft_type}, {ft} - {os.getpid()}')
     create_figures(ft, ft_type, project, weight,
-                   global_weight, same_gene, iteration, inter_chr)
+                   global_weight, same_gene, iteration, inter_chr, level)
 
 
 def create_all_distance_figures(ps: int, weight: int = 1,
                                 global_weight: int = 0, ft_type: str = "nt",
                                 same_gene: bool = True,
                                 iteration: int = 10000,
-                                inter_chr: bool = False,
+                                inter_chr: bool = False, level: str = "exon",
                                 logging_level: str = "DISABLE"):
     """
     Make density figure for every selected projects.
@@ -348,6 +357,7 @@ def create_all_distance_figures(ps: int, weight: int = 1,
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
     :param ps: The number of processes to create
+    :param level: The kind of feature to analyse (exon or gene)
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
     if global_weight == 0:
@@ -360,7 +370,7 @@ def create_all_distance_figures(ps: int, weight: int = 1,
     processes = []
     for project, ft, ft_type in param:
         args = [project, ft_type, ft, weight, global_weight, same_gene,
-                iteration, inter_chr]
+                iteration, inter_chr, level]
         processes.append(pool.apply_async(execute_density_figure_function,
                                           args))
     for proc in processes:
diff --git a/src/nt_composition/make_nt_correlation.py b/src/nt_composition/make_nt_correlation.py
index 58969b9e7c329f8729656d85dd995a688a0b2d47..f1fcfb709922c12bc1b56b6d333c044887e02b97 100644
--- a/src/nt_composition/make_nt_correlation.py
+++ b/src/nt_composition/make_nt_correlation.py
@@ -152,8 +152,8 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str,
     return result
 
 
-def get_frequency_dic(cnx: sqlite3.Connection, ft: str, ft_type: str
-                      ) -> Dict[str, float]:
+def get_frequency_dic(cnx: sqlite3.Connection, ft: str, ft_type: str,
+                      level: str = "exon") -> Dict[str, float]:
     """
     Get the frequency of a feature for every exon in \
     the chia-pet database.
@@ -161,23 +161,30 @@ def get_frequency_dic(cnx: sqlite3.Connection, ft: str, ft_type: str
     :param cnx: Connection to chia-pet database
     :param ft: The feature of interest
     :param ft_type: The type of feature of interest
+    :param level: The kind of feature to analyse (exon or gene)
     :return: The frequency dic
     """
     logging.debug('Calculating frequency table')
-    query = "SELECT id_exon, frequency " \
-            "FROM cin_exon_frequency " \
+    reg = ''
+    if level == "gene":
+        reg = "AND region='gene'"
+    query = f"SELECT id_{level}, frequency " \
+            f"FROM cin_{level}_frequency " \
             f"WHERE ft = '{ft}' " \
-            f"AND ft_type = '{ft_type}'"
+            f"AND ft_type = '{ft_type}' " \
+            f"{reg}"
+
     c = cnx.cursor()
     c.execute(query)
     result = c.fetchall()
     if len(result) == 0:
-        msg = f'No Frequencies found for {ft} ({ft_type})'
+        msg = f'No Frequencies found for {level} {ft} ({ft_type})'
         logging.exception(msg)
         raise NoInteractionError(msg)
-    dic = {}
-    for exon, freq in result:
-        dic[exon] = freq
+    if level == "exon":
+        dic = {exon: freq for exon, freq in result}
+    else:
+        dic = {str(exon): freq for exon, freq in result}
     logging.debug({k: dic[k] for k in list(dic.keys())[0:5]})
     return dic
 
@@ -203,7 +210,8 @@ def get_dic_co_regulated_exon(arr_interaction: np.array):
     return d
 
 
-def density_mean(arr_interaction: np.array, dic_freq: Dict[str, float]):
+def density_mean(arr_interaction: np.array, dic_freq: Dict[str, float],
+                 level: str):
     """
     Create the density table, a table showing the frequency of \
     a nucleotide in every exon in a chia-pet project and the mean \
@@ -211,26 +219,29 @@ def density_mean(arr_interaction: np.array, dic_freq: Dict[str, float]):
 
     :param arr_interaction: array of interaction between exons.
     :param dic_freq: The frequency dataframe.
+    :param level: The kind of feature to analyse (exon or gene)
     :return: The density table
     """
     exons_dic = get_dic_co_regulated_exon(arr_interaction)
-    dic = {'exon': [], 'freq_exon': [], 'freq_coloc_exon': [], 'oexon': []}
+    dic = {f'{level}': [], f'freq_{level}': [], f'freq_coloc_{level}': [],
+           f'o{level}': []}
     for exon in exons_dic.keys():
         freq_ex = dic_freq[exon]
         oexon = np.unique(exons_dic[exon])
         freq_oexon = np.nanmean(np.asarray([dic_freq[ex] for ex in oexon],
                                            dtype=float))
         if freq_ex is not None and not np.isnan(freq_oexon):
-            dic['exon'].append(exon)
-            dic['freq_exon'].append(freq_ex)
-            dic['freq_coloc_exon'].append(freq_oexon)
-            dic['oexon'].append(", ".join(oexon))
+            dic[level].append(exon)
+            dic[f'freq_{level}'].append(freq_ex)
+            dic[f'freq_coloc_{level}'].append(freq_oexon)
+            dic[f'o{level}'].append(", ".join(oexon))
     df = pd.DataFrame(dic)
     logging.debug(df.head())
     return df
 
 
-def simple_density(arr_interaction: np.array, dic_freq: Dict[str, float]):
+def simple_density(arr_interaction: np.array, dic_freq: Dict[str, float],
+                   level: str):
     """
     Create the density table, a table showing the frequency of \
     a nucleotide in every exon in a chia-pet project and the \
@@ -238,24 +249,27 @@ def simple_density(arr_interaction: np.array, dic_freq: Dict[str, float]):
 
     :param arr_interaction: array of interaction between exons.
     :param dic_freq: The frequency dataframe.
+    :param level: The kind of feature to analyse (exon or gene)
     :return: The density table
     """
-    dic = {'exon1': [], 'freq_exon': [], 'freq_coloc_exon': [], 'exon2': []}
+    dic = {f'{level}1': [], f'freq_{level}': [],
+           f'freq_coloc_{level}': [], f'{level}2': []}
     for exon1, exon2 in arr_interaction:
         freq_ex = dic_freq[exon1]
         freq_ex2 = dic_freq[exon2]
         if freq_ex is not None and freq_ex2 is not None:
-            dic['exon1'].append(exon1)
-            dic['freq_exon'].append(freq_ex)
-            dic['freq_coloc_exon'].append(freq_ex2)
-            dic['exon2'].append(exon2)
+            dic[f'{level}1'].append(exon1)
+            dic[f'freq_{level}'].append(freq_ex)
+            dic[f'freq_coloc_{level}'].append(freq_ex2)
+            dic[f'{level}2'].append(exon2)
     df = pd.DataFrame(dic)
     logging.debug(df.head())
     return df
 
 
 def create_density_table(arr_interaction: np.array, dic_freq: Dict[str, float],
-                         compute_mean: bool = False) -> pd.DataFrame:
+                         compute_mean: bool = False, level: str = "exon"
+                         ) -> pd.DataFrame:
     """
     Create the density table, a table showing the frequency of \
     a nucleotide in every exon in a chia-pet project and the mean \
@@ -266,19 +280,21 @@ def create_density_table(arr_interaction: np.array, dic_freq: Dict[str, float],
     :param dic_freq: The frequency dataframe.
     :param compute_mean: True to compute the mean frequency of co-localised \
     exons, false to only compute the frequency of one co-localized exons.
+    :param level: The kind of feature to analyse (exon or gene)
     :return: The density table
     """
     logging.debug(f'Calculating density table ({os.getpid()})')
     if compute_mean:
-        return density_mean(arr_interaction, dic_freq)
+        return density_mean(arr_interaction, dic_freq, level)
     else:
-        return simple_density(arr_interaction, dic_freq)
+        return simple_density(arr_interaction, dic_freq, level)
 
 
 def create_density_fig(df: pd.DataFrame, project: str, ft_type: str, ft: str,
                        weight: int, global_weight: int,
                        community_size: Optional[int],
-                       inter_chr: bool) -> Tuple[float, float]:
+                       inter_chr: bool, level: str
+                       ) -> Tuple[float, float]:
     """
     Compute a density file showing if the feature frequency of \
     an exons correlates with the frequency in other co-localised exons.
@@ -296,23 +312,26 @@ def create_density_fig(df: pd.DataFrame, project: str, ft_type: str, ft: str,
     seen in `global_weight` project are taken into account
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
+    :param level: The kind of feature to analyse (exon or gene)
     :return: The correlation and the p-value
     """
     logging.debug('Creating the density figure')
     sns.set()
     sns.set_context('talk')
     plt.figure(figsize=(20, 12))
-    df2 = df[['freq_exon', 'freq_coloc_exon']].copy()
-    s, i, r, p, stderr = linregress(df.freq_exon, df.freq_coloc_exon)
-    sns.kdeplot(df2.freq_exon, df2.freq_coloc_exon, shade=True,
+    df2 = df[[f'freq_{level}', f'freq_coloc_{level}']].copy()
+    s, i, r, p, stderr = linregress(df[f"freq_{level}"],
+                                    df[f'freq_coloc_{level}'])
+    sns.kdeplot(df2[f'freq_{level}'], df2[f'freq_coloc_{level}'], shade=True,
                 shade_lowest=False,
                 cmap="YlOrBr")
-    plt.plot(df.freq_exon, i + s * df.freq_exon, 'r',
+    plt.plot(df[f"freq_{level}"], i + s * df[f"freq_{level}"], 'r',
              label=f'r={round(r,4)}, p={round(p, 4)}')
     plt.legend()
-    plt.xlabel(f"Freq of {ft} in an exon")
-    plt.ylabel(f"Freq of {ft} in co-localized exons")
-    title = f'Freq of {ft} of exons and their co-localized partner in ' \
+    ml = "an exon" if level == "exon" else "a gene"
+    plt.xlabel(f"Freq of {ft} in {ml}")
+    plt.ylabel(f"Freq of {ft} in co-localized {level}s")
+    title = f'Freq of {ft} of {level}s and their co-localized partner in ' \
               f'{project}'
     if inter_chr:
         title += '\n(inter chromosomal interactions)'
@@ -329,7 +348,7 @@ def create_density_figure(nt: str, ft_type: str,
                           project: str, weight: int, global_weight: int,
                           same_gene: bool, compute_mean: bool,
                           community_size: Optional[int],
-                          inter_chr: bool = False,
+                          inter_chr: bool = False, level: str = "exon",
                           logging_level: str = "DISABLE"
                           ) -> Tuple[float, float]:
     """
@@ -352,6 +371,7 @@ def create_density_figure(nt: str, ft_type: str,
     analysis.
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
+    :param level: The kind of feature to analyse (exon or gene)
     :param logging_level: The level of information to display
     :return: The correlation and the p-value
     """
@@ -368,17 +388,20 @@ def create_density_figure(nt: str, ft_type: str,
         arr_interaction = get_project_colocalisation(cnx, project, weight,
                                                      global_weight, same_gene,
                                                      False, exons_bc,
-                                                     inter_chr)
-        dic_freq = get_frequency_dic(cnx, nt, ft_type)
-        df = create_density_table(arr_interaction, dic_freq, compute_mean)
+                                                     inter_chr, level=level)
+        dic_freq = get_frequency_dic(cnx, nt, ft_type, level)
+        df = create_density_table(arr_interaction, dic_freq, compute_mean,
+                                  level)
         df.to_csv(outfile, sep="\t", index=False)
         r, p = create_density_fig(df, project, ft_type, nt, weight,
-                                  global_weight, community_size, inter_chr)
+                                  global_weight, community_size, inter_chr,
+                                  level)
     else:
         logging.debug(f'The file {outfile} exist, recovering data '
                       f'({os.getpid()})')
         df = pd.read_csv(outfile, sep="\t")
-        s, i, r, p, stderr = linregress(df.freq_exon, df.freq_coloc_exon)
+        s, i, r, p, stderr = linregress(df[f"freq_{level}"],
+                                        df[f"freq_coloc_{level}"])
     return r, p
 
 
@@ -433,7 +456,8 @@ def execute_density_figure_function(di: pd.DataFrame, project : str,
                                     same_gene: bool,
                                     compute_mean: bool,
                                     community_size: Optional[int],
-                                    inter_chr: bool = False
+                                    inter_chr: bool = False,
+                                    level: str= "exon",
                                     ) -> Dict[str, Any]:
     """
     Execute create_density_figure and organized the results in a dictionary.
@@ -455,20 +479,20 @@ def execute_density_figure_function(di: pd.DataFrame, project : str,
     analysis.
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
+    :param level: The kind of feature to analyse (exon or gene)
     :return:
     """
     logging.info(f'Working on {project}, {ft_type}, {ft} - {os.getpid()}')
     r, p = create_density_figure(ft, ft_type, project, weight,
                                  global_weight, same_gene, compute_mean,
-                                 community_size, inter_chr)
+                                 community_size, inter_chr, level)
     if global_weight == 0:
-        tmp = {"project": project, "ft_type": ft_type,
+        return {"project": project, "ft_type": ft_type,
                "ft": ft, "cor": r, "pval": p,
                'nb_interaction': di[di['projects'] == project].iloc[0, 1]}
     else:
-        tmp = {"project": project, "ft_type": ft_type,
+        return {"project": project, "ft_type": ft_type,
                "ft": ft, "cor": r, "pval": p}
-    return tmp
 
 
 def combine_dic(list_dic: List[Dict]) -> Dict:
@@ -524,7 +548,7 @@ def create_all_frequency_figures(ps: int, weight: int = 1,
                                  global_weight: int = 0, ft_type: str = "nt",
                                  same_gene = True, compute_mean: bool = True,
                                  community_size: Optional[int] = None,
-                                 inter_chr: bool = False,
+                                 inter_chr: bool = False, level: str = "exon",
                                  logging_level: str = "DISABLE"):
     """
     Make density figure for every selected projects.
@@ -545,6 +569,7 @@ def create_all_frequency_figures(ps: int, weight: int = 1,
     :param ps: The number of processes to create
     :param inter_chr: True to only get inter-chromosomal interactions \
     False else
+    :param level: The kind of feature to analyse (exon or gene)
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
     if global_weight == 0:
@@ -560,7 +585,7 @@ def create_all_frequency_figures(ps: int, weight: int = 1,
     processes = []
     for project, ft, ft_type in param:
         args = [di, project, ft_type, ft, weight, global_weight, same_gene,
-                compute_mean, community_size, inter_chr]
+                compute_mean, community_size, inter_chr, level]
         processes.append(pool.apply_async(execute_density_figure_function,
                                           args))
     results = [proc.get(timeout=None) for proc in processes]