diff --git a/src/find_interaction_cluster/.ipynb_checkpoints/composition_heatmap-checkpoint.py b/src/find_interaction_cluster/.ipynb_checkpoints/composition_heatmap-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..abcbab1adac3ed08312b95017ee98014d06813a1
--- /dev/null
+++ b/src/find_interaction_cluster/.ipynb_checkpoints/composition_heatmap-checkpoint.py
@@ -0,0 +1,345 @@
+"""
+description
+create a cpnt composition heatmap
+"""
+
+import pandas as pd
+from pathlib import Path
+import os
+import lazyparser as lp
+from .config import ConfigGraph
+from ..nt_composition.config import get_features
+import plotly
+import plotly.graph_objects as go
+import plotly.figure_factory as ff
+from scipy.cluster.hierarchy import linkage
+from matplotlib_venn import venn2
+import matplotlib.backends.backend_pdf
+import matplotlib.pyplot as plt
+import doctest
+
+
+def load_input_output_folders(in_folder, out_folder="results/composition_heatmap"):
+    in_folder = Path(in_folder)
+    out_folder = Path(out_folder)
+    if os.path.exists(out_folder):
+        pass
+    else:
+        os.mkdir(out_folder)
+
+    results_folder = out_folder / f"{in_folder.name}"
+
+    if os.path.exists(results_folder):
+        pass
+    else:
+        os.mkdir(results_folder)
+
+    return in_folder, results_folder
+
+
+def filter_up_down(x):
+    if "down_figure_bar.txt" in x:
+        res = "down"
+    elif "up_figure_bar.txt" in x:
+        res = "up"
+    else:
+        raise ValueError("Unable to filter up and down file correctly , please check your bar files")
+    return res
+
+
+def tf_filter(df, community, nb_regulated=200,alpha="0.05", fc: float = 0.5849):
+    """
+    filtered dataframe : factors with DE genes less than a threshold (default 200) are eliminated
+    :param alpha:
+    :param df: table used to create the heatmap
+    :param community: the community
+    :param nb_regulated: the threshold (200 default)
+    :param fc: the fold change
+    :return: filtered dataframe
+    """
+    community_name = f"{community.name.split('.txt')[0].split('.bed')[0]}.csv"
+    if float(format(fc, ".2f")) == 0.58:
+        community_recap_table_path = ConfigGraph.communities_recap_table_path_058 / community_name
+        print(community_recap_table_path)
+    else:
+        community_recap_table_path = ConfigGraph.communities_recap_table_path_04 / community_name
+        print(community_recap_table_path)
+
+    try:
+
+        df_f = pd.read_csv(community_recap_table_path)
+        df_f = df_f.loc[df_f["all_DE"] > nb_regulated]
+        df_f = df_f.loc[(df_f[f"up_comm_alpha_{alpha}"] != 0) | (df_f[f"down_comm_alpha_{alpha}"] != 0)]
+        df = df[df["Target_of_assay"].isin(df_f["Target_of_assay"])]
+
+
+    except FileNotFoundError:
+
+        print('{} does not exist '.format(community_recap_table_path))
+
+    return df
+
+
+def load_filter_reacap(in_folder: Path, results_folder: Path, cpnt_type: str, community, alpha="0.05") -> pd.DataFrame:
+    """
+    :param community:
+    :param results_folder:
+    :param in_folder: the folder containing all the composition analysis , all nt_analysis,dnt_analysis,tnt_anlysis \
+    and aa_analysis
+    :param cpnt_type: nt or dnt or tnt or aa
+    :param alpha: type one error
+    :return: a filtred dataframe containing only enriched vs control , alpha = ?
+
+    >>> d = load_filter_reacap(Path(ConfigGraph.load_filter_reacap),'nt')
+
+    >>> d["TF"]
+    0    NKRF
+    1    NKRF
+    2    NKRF
+    3    NKRF
+    >>> d["down_or_up"]
+    0      up
+    1      up
+    2    down
+    3    down
+    """
+    recap_cpnt_path = in_folder / f"{cpnt_type}_analysis" / f"recap_{cpnt_type}.csv"
+    df = pd.read_csv(recap_cpnt_path, sep="\t")
+    df_only_TF = pd.read_csv(ConfigGraph.only_tf_05849)
+    df_only_TF = tf_filter(df_only_TF,community, alpha=alpha)
+    TF_list = list(df_only_TF["Target_of_assay"])
+    df["TF"] = list(map(lambda x: x.split('_')[0], df["factor"]))
+    df["alpha"] = list(map(lambda x: x.split('_')[1], df["factor"]))
+    df["down_or_up"] = list(map(lambda x: filter_up_down(x), df["factor"]))
+    df = df.loc[df["TF"].isin(TF_list)]  # to keep only the 136 TF curated manually
+    df = df.loc[df["alpha"] == alpha]
+    df = df.loc[(df["grp1"] == "ctrl") & (df["grp2"] == "enriched")]
+    df.to_csv(results_folder / f"filtred_recap_{cpnt_type}_{alpha}.csv", index=False)
+
+    return df
+
+
+def get_cpnt_row(df: pd.DataFrame, tf: str, reg: str, p_val_weight: bool) -> pd.Series:
+    """
+    :param p_val_weight: if the parameter is set to True then the values inside the heatmap \
+    cell will be multiplied by 1-padj as preponderance factor
+    :param reg: down or up genes
+    :param cpnt_type:  nt or dnt or tnt or aa
+    :param tf: the transcription factor you want retrieve cpnt frequencies
+    :param df: the filtered and processed  dataframe
+
+    """
+    df_reg = df.loc[df["down_or_up"] == reg]
+    df_reg = df_reg.loc[df["TF"] == tf]
+    if not df_reg.empty:
+        if p_val_weight:
+            df_reg["value"] = df_reg.apply(
+                lambda x: ((1 - x["p-adj"]) * (x["mean_grp2"] - x["mean_grp1"]) / x["mean_grp1"]), axis=1)
+        else:
+            df_reg["value"] = df_reg.apply(lambda x: ((x["mean_grp2"] - x["mean_grp1"]) / x["mean_grp1"]), axis=1)
+
+        df_reg = df_reg[["cpnt", "value"]]
+        df_reg = df_reg.set_index("cpnt")
+        row = df_reg["value"]
+        row = row.append(pd.Series({"TF": tf}))
+        return row  # a pd.Serie
+    else:
+        pass
+
+
+def generate_heatmap_tables(df: pd.DataFrame, cpnt_type, p_val_weight: bool) -> (pd.DataFrame, pd.DataFrame):
+    """
+
+    :param df: filtred df
+    :param cpnt_type:
+    :param p_val_weight: if the parameter is set to True then the values inside the heatmap \
+    cell will be multiplied by 1-padj as preponderance factor
+    :return: tuple containing two dataframe df_down and df_up
+    """
+    tf_list = list(df["TF"].unique())
+    cols = get_features(cpnt_type).append("TF")
+    df_up = pd.DataFrame(columns=cols)
+    df_down = pd.DataFrame(columns=cols)
+
+    for tf in tf_list:
+        row = get_cpnt_row(df, tf, "down", p_val_weight)
+        df_down = df_down.append(row, ignore_index=True)
+    df_down = df_down.set_index("TF")
+
+    for tf in tf_list:
+        row = get_cpnt_row(df, tf, "up", p_val_weight)
+        df_up = df_up.append(row, ignore_index=True)
+    df_up = df_up.set_index("TF")
+
+    return df_up, df_down
+
+
+def heatmap_fig(df: pd.DataFrame, outfile: Path, color_scale: str):
+    """
+        Create a heatmap.
+
+        :param df: List of percentage of features regulated by a factor in \
+        a given spatial cluster
+        :param outfile: The name of the figure to produce
+        :param contrast: (int) the value of the contrast
+        :param color_scale: The name of the color scale
+        """
+    data_array = df.values
+    labelsx = list(df.columns)
+    labelsy = list(df.index)
+    index_side_dic = {l: i for i, l in enumerate(labelsy)}
+    index_up_dic = {l: i for i, l in enumerate(labelsx)}
+    data_up = data_array.transpose()
+    # Initialize figure by creating upper dendrogram
+    fig = ff.create_dendrogram(data_up, orientation='bottom', labels=labelsx,
+                               linkagefun=lambda x: linkage(x, ConfigGraph.clustering))
+    for i in range(len(fig['data'])):
+        fig['data'][i]['yaxis'] = 'y2'
+
+    # Create Side Dendrogram
+    dendro_side = ff.create_dendrogram(data_array, orientation='right',
+                                       labels=labelsy,
+                                       linkagefun=lambda x: linkage(x, ConfigGraph.clustering))
+    for i in range(len(dendro_side['data'])):
+        dendro_side['data'][i]['xaxis'] = 'x2'
+
+    # Create Heatmap
+    dendro_side_leaves = dendro_side['layout']['yaxis']['ticktext']
+    fig['layout']['yaxis']['ticktext'] = dendro_side['layout']['yaxis']['ticktext']
+    index_side = [index_side_dic[l] for l in dendro_side_leaves]
+    dendro_up_leaves = fig['layout']['xaxis']['ticktext']
+    heat_data = data_array[index_side, :]
+    index_up = [index_up_dic[l] for l in dendro_up_leaves]
+    heat_data = heat_data[:, index_up]
+
+    if color_scale == "Picnic":
+        heatmap = [
+            go.Heatmap(
+                x=dendro_up_leaves,
+                y=dendro_side_leaves,
+                z=heat_data,
+                colorbar={"x": -0.05},
+                colorscale=color_scale,
+                zmid=0
+            )
+        ]
+    else:
+        heatmap = [
+            go.Heatmap(
+                x=dendro_up_leaves,
+                y=dendro_side_leaves,
+                z=heat_data,
+                colorbar={"x": -0.05},
+                colorscale=color_scale
+            )
+        ]
+    heatmap[0]['x'] = fig['layout']['xaxis']['tickvals']
+    fig['layout']['yaxis']['tickvals'] = dendro_side['layout']['yaxis']['tickvals']
+    heatmap[0]['y'] = dendro_side['layout']['yaxis']['tickvals']
+
+    #
+    # # Add Heatmap Data to Figure
+    for data in heatmap:
+        fig.add_trace(data)
+
+    # Edit Layout
+    fig['layout'].update({"autosize": True, "height": 1080, "width": 1920,
+                          'showlegend': False, 'hovermode': 'closest',
+                          })
+    # Edit xaxis
+    fig['layout']['xaxis'].update({'domain': [0.15, 0.8],
+                                   'mirror': False,
+                                   'showgrid': False,
+                                   'showline': False,
+                                   'zeroline': False,
+                                   'showticklabels': True,
+                                   'ticks': ""})
+    # Edit xaxis2
+    fig['layout'].update({'xaxis2': {'domain': [0, .15],
+                                     'mirror': False,
+                                     'showgrid': False,
+                                     'showline': False,
+                                     'zeroline': False,
+                                     'showticklabels': False,
+                                     'ticks': ""}})
+
+    # Edit yaxis
+    fig['layout']['yaxis'].update({'domain': [0.11, .85],
+                                   'mirror': False,
+                                   'showgrid': False,
+                                   'showline': False,
+                                   'zeroline': False,
+                                   'showticklabels': True,
+                                   'ticks': "",
+                                   "side": "right"})
+    # Edit yaxis2
+    fig['layout'].update({'yaxis2': {'domain': [.825, 1],
+                                     'mirror': False,
+                                     'showgrid': False,
+                                     'showline': False,
+                                     'zeroline': False,
+                                     'showticklabels': False,
+                                     'ticks': ""}})
+    plotly.offline.plot(fig, filename=str(outfile), auto_open=False)
+
+
+def venn_compo(df0, results_folder, cpnt_type, alpha="0.05"):
+    """
+    creates a venn diagramme classifying tf by the regulation type up/down
+
+    :param df: the filtered and processed  dataframe
+    :param results_folder:
+    :param cpnt_type:
+    :param alpha:
+    """
+    totale_analysed_TF = len(df0["TF"].unique())
+    df0 = df0[df0["grp1_vs_grp2"] != " . "]
+    df_down = df0[df0["down_or_up"] == "down"]
+    df_up = df0[df0["down_or_up"] == "up"]
+
+    E = set(df_down["TF"].unique())
+    K = set(df_up["TF"].unique())
+    with matplotlib.backends.backend_pdf.PdfPages(results_folder / f"{cpnt_type}_venny_alpha_{alpha}.pdf") as pdf:
+        fig = plt.figure(figsize=(15, 15))
+        title = "{}_{} alpha = {} ".format(results_folder.name, cpnt_type, alpha)
+        plt.title(title)
+        total = len(K.union(E))
+        I = set(K.intersection(E))
+        v = venn2([E, K], (f'TF showing {cpnt_type} biased down genes', f'TF showing {cpnt_type} biased up genes '))
+
+        if len(I) > 0:
+            v.get_label_by_id('100').set_text('\n'.join(E - K))
+            v.get_label_by_id('110').set_text('\n'.join(I))
+            v.get_label_by_id('010').set_text('\n'.join(K - E))
+
+        plt.text(0.6, 0.2, 'total={}/{} TF show at least one bias of composition  \
+        in term of {} for (down or up or both)-regulated genes'.format(total, totale_analysed_TF, cpnt_type))
+        pdf.savefig()
+
+
+@lp.parse(cpnt_type=['nt', 'dnt', 'tnt', 'aa'], alpha=["0.1", "0.05"])
+def heatmap_launcher(in_folder, cpnt_type, community: str, p_val_weight: bool = False,
+                     out_folder="results/composition_heatmap",
+                     alpha="0.05"):
+    """
+    creates a cpnt  composition heatmap
+
+    :param community: the community file path annotation method
+    :param p_val_weight: if the parameter is set to True then the values inside the heatmap \
+    cell will be multiplied by 1-padj as preponderance factor to empathize  on the significance level of comparison
+    :param in_folder: folder containing the recap.csv file
+    :param cpnt_type: the type of cpnt we are interested in
+    :param out_folder: folder where all results will be generated
+    :param alpha: type one error ["0.05","0.1"] default is 0.05
+    """
+    in_folder, results_folder = load_input_output_folders(in_folder, out_folder)
+    filtered_recap = load_filter_reacap(in_folder, results_folder, cpnt_type, Path(community), alpha)
+    df_up, df_down = generate_heatmap_tables(filtered_recap, cpnt_type, p_val_weight)
+    heatmap_fig(df_up.T, results_folder / f"up_{cpnt_type}_heatmap_alpha_{alpha}.html", color_scale="Picnic")
+    heatmap_fig(df_down.T, results_folder / f"down_{cpnt_type}_heatmap_alpha_{alpha}.html", color_scale="Picnic")
+    venn_compo(filtered_recap, results_folder, cpnt_type, alpha)
+
+
+if __name__ == "__main__":
+    # doctest.testmod()
+    heatmap_launcher()
diff --git a/src/find_interaction_cluster/composition_heatmap.py b/src/find_interaction_cluster/composition_heatmap.py
index c955e21b38085943e1810d62f1d741b88d5c459e..abcbab1adac3ed08312b95017ee98014d06813a1 100644
--- a/src/find_interaction_cluster/composition_heatmap.py
+++ b/src/find_interaction_cluster/composition_heatmap.py
@@ -47,8 +47,42 @@ def filter_up_down(x):
     return res
 
 
-def load_filter_reacap(in_folder: Path, results_folder: Path, cpnt_type: str, alpha="0.05") -> pd.DataFrame:
+def tf_filter(df, community, nb_regulated=200,alpha="0.05", fc: float = 0.5849):
     """
+    filtered dataframe : factors with DE genes less than a threshold (default 200) are eliminated
+    :param alpha:
+    :param df: table used to create the heatmap
+    :param community: the community
+    :param nb_regulated: the threshold (200 default)
+    :param fc: the fold change
+    :return: filtered dataframe
+    """
+    community_name = f"{community.name.split('.txt')[0].split('.bed')[0]}.csv"
+    if float(format(fc, ".2f")) == 0.58:
+        community_recap_table_path = ConfigGraph.communities_recap_table_path_058 / community_name
+        print(community_recap_table_path)
+    else:
+        community_recap_table_path = ConfigGraph.communities_recap_table_path_04 / community_name
+        print(community_recap_table_path)
+
+    try:
+
+        df_f = pd.read_csv(community_recap_table_path)
+        df_f = df_f.loc[df_f["all_DE"] > nb_regulated]
+        df_f = df_f.loc[(df_f[f"up_comm_alpha_{alpha}"] != 0) | (df_f[f"down_comm_alpha_{alpha}"] != 0)]
+        df = df[df["Target_of_assay"].isin(df_f["Target_of_assay"])]
+
+
+    except FileNotFoundError:
+
+        print('{} does not exist '.format(community_recap_table_path))
+
+    return df
+
+
+def load_filter_reacap(in_folder: Path, results_folder: Path, cpnt_type: str, community, alpha="0.05") -> pd.DataFrame:
+    """
+    :param community:
     :param results_folder:
     :param in_folder: the folder containing all the composition analysis , all nt_analysis,dnt_analysis,tnt_anlysis \
     and aa_analysis
@@ -72,14 +106,16 @@ def load_filter_reacap(in_folder: Path, results_folder: Path, cpnt_type: str, al
     recap_cpnt_path = in_folder / f"{cpnt_type}_analysis" / f"recap_{cpnt_type}.csv"
     df = pd.read_csv(recap_cpnt_path, sep="\t")
     df_only_TF = pd.read_csv(ConfigGraph.only_tf_05849)
+    df_only_TF = tf_filter(df_only_TF,community, alpha=alpha)
     TF_list = list(df_only_TF["Target_of_assay"])
     df["TF"] = list(map(lambda x: x.split('_')[0], df["factor"]))
-    df = df.loc[df["TF"].isin(TF_list)]  # to keep only the 136 TF curated manually
     df["alpha"] = list(map(lambda x: x.split('_')[1], df["factor"]))
-    df = df.loc[df["alpha"] == alpha]
     df["down_or_up"] = list(map(lambda x: filter_up_down(x), df["factor"]))
+    df = df.loc[df["TF"].isin(TF_list)]  # to keep only the 136 TF curated manually
+    df = df.loc[df["alpha"] == alpha]
     df = df.loc[(df["grp1"] == "ctrl") & (df["grp2"] == "enriched")]
     df.to_csv(results_folder / f"filtred_recap_{cpnt_type}_{alpha}.csv", index=False)
+
     return df
 
 
@@ -93,7 +129,6 @@ def get_cpnt_row(df: pd.DataFrame, tf: str, reg: str, p_val_weight: bool) -> pd.
     :param df: the filtered and processed  dataframe
 
     """
-    print(tf)
     df_reg = df.loc[df["down_or_up"] == reg]
     df_reg = df_reg.loc[df["TF"] == tf]
     if not df_reg.empty:
@@ -248,7 +283,7 @@ def heatmap_fig(df: pd.DataFrame, outfile: Path, color_scale: str):
     plotly.offline.plot(fig, filename=str(outfile), auto_open=False)
 
 
-def venn_compo(df0, results_folder, cpnt_type, alpha="0.05") :
+def venn_compo(df0, results_folder, cpnt_type, alpha="0.05"):
     """
     creates a venn diagramme classifying tf by the regulation type up/down
 
@@ -283,11 +318,13 @@ def venn_compo(df0, results_folder, cpnt_type, alpha="0.05") :
 
 
 @lp.parse(cpnt_type=['nt', 'dnt', 'tnt', 'aa'], alpha=["0.1", "0.05"])
-def heatmap_launcher(in_folder, cpnt_type, p_val_weight: bool = False, out_folder="results/composition_heatmap",
+def heatmap_launcher(in_folder, cpnt_type, community: str, p_val_weight: bool = False,
+                     out_folder="results/composition_heatmap",
                      alpha="0.05"):
     """
     creates a cpnt  composition heatmap
 
+    :param community: the community file path annotation method
     :param p_val_weight: if the parameter is set to True then the values inside the heatmap \
     cell will be multiplied by 1-padj as preponderance factor to empathize  on the significance level of comparison
     :param in_folder: folder containing the recap.csv file
@@ -296,7 +333,7 @@ def heatmap_launcher(in_folder, cpnt_type, p_val_weight: bool = False, out_folde
     :param alpha: type one error ["0.05","0.1"] default is 0.05
     """
     in_folder, results_folder = load_input_output_folders(in_folder, out_folder)
-    filtered_recap = load_filter_reacap(in_folder, results_folder, cpnt_type, alpha)
+    filtered_recap = load_filter_reacap(in_folder, results_folder, cpnt_type, Path(community), alpha)
     df_up, df_down = generate_heatmap_tables(filtered_recap, cpnt_type, p_val_weight)
     heatmap_fig(df_up.T, results_folder / f"up_{cpnt_type}_heatmap_alpha_{alpha}.html", color_scale="Picnic")
     heatmap_fig(df_down.T, results_folder / f"down_{cpnt_type}_heatmap_alpha_{alpha}.html", color_scale="Picnic")
diff --git a/src/find_interaction_cluster/heatmap_cluster.py b/src/find_interaction_cluster/heatmap_cluster.py
index 0cfa96d162ea83e1966521ba6a96b22d7bec7b98..298d305c07a2dec70cf40e7ec92c18b4527303ab 100644
--- a/src/find_interaction_cluster/heatmap_cluster.py
+++ b/src/find_interaction_cluster/heatmap_cluster.py
@@ -812,7 +812,7 @@ def heatmap_creator(htype: str, community_files: List[str] = (),
                     feature: str = "gene", nb_regulated: int = 200,
                     iteration: int = 10000, alternative: str = "two_sided",
                     ps: int = mp.cpu_count(),
-                    alpha: float = -1 ,fc = 0.5849) -> None:
+                    alpha: float = -1 , fc = 0.5849) -> None:
     """
     Create an heatmap indicating the percentage of genes/exons regulated \
     by a splicing factor in every spatial clusters.
diff --git a/src/shiny_Interactive_hist_plots/.RData b/src/shiny_Interactive_hist_plots/.RData
index 5103124b7263cc7593181d6019e455335c195b6a..9bc95d68410d52a107b9d1315d8e08d5bfbbb75e 100644
Binary files a/src/shiny_Interactive_hist_plots/.RData and b/src/shiny_Interactive_hist_plots/.RData differ
diff --git a/src/shiny_Interactive_hist_plots/.Rhistory b/src/shiny_Interactive_hist_plots/.Rhistory
index 07baa587c0fe1c04cfcb7331cafa0e45574012e6..1ee87954e097f9be0affada4a24ec23e259e3fc4 100644
--- a/src/shiny_Interactive_hist_plots/.Rhistory
+++ b/src/shiny_Interactive_hist_plots/.Rhistory
@@ -90,7 +90,17 @@ runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interact
 shiny::runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interactive_hist_plots')
 shiny::runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interactive_hist_plots')
 shiny::runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+shiny::runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+shiny::runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interactive_hist_plots')
+runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interactive_hist_plots')
+runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interactive_hist_plots')
+shiny::runApp('Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots')
+shiny::runApp('Desktop/Transcriptomics_analysis/Enrichement_analysis/scr/shiny_Interactive_hist_plots')
 setwd("~/Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots")
-runApp()
 setwd("~/Desktop/Transcriptomics_analysis/chia-pet_network/src/shiny_Interactive_hist_plots")
 runApp()
+runApp()
diff --git a/src/shiny_Interactive_hist_plots/server.R b/src/shiny_Interactive_hist_plots/server.R
index e7f48c55976612341b4d65ad184bfbd0ed010e57..3a4f3e7e1a6ef97460f3ea4ced3efe26996be274 100644
--- a/src/shiny_Interactive_hist_plots/server.R
+++ b/src/shiny_Interactive_hist_plots/server.R
@@ -84,6 +84,7 @@ shinyServer(function(input, output) {
             geom_bar(stat = 'identity', position = 'dodge')+
             theme(axis.text.x=element_text(angle=90,hjust=1))+
             geom_text(aes(label=value), position=position_dodge(width=0.9), vjust=-0.25)
+            #ggsave("/home/ali/Desktop/mtcars.png", width = 40, height = 20, units = "cm")
             
             
             
diff --git a/src/shiny_Interactive_hist_plots/ui.R b/src/shiny_Interactive_hist_plots/ui.R
index e5c014accb8a9c9e2d6d0c1504adf315eed065de..a00b15c21cc17e90a9478e90049c178f766b5126 100644
--- a/src/shiny_Interactive_hist_plots/ui.R
+++ b/src/shiny_Interactive_hist_plots/ui.R
@@ -23,7 +23,7 @@ shinyUI(fluidPage(
               selectInput('project','Select project',choice =Sys.glob("data/PR_*") ),
              
               checkboxInput("filter_zero", "Hide TF with zero DE communities", FALSE),
-              sliderInput("filter", "Show TFX with total number of DE genes >",min = 0, max = 1000, value = 100),
+              sliderInput("filter", "Show TFX with total number of DE genes >",min = 0, max = 1000, value = 200),
               verbatimTextOutput("text_dim"),
               tabsetPanel(type = "tabs",