diff --git a/src/nt_composition/__main__.py b/src/nt_composition/__main__.py
index 72e99bbc3c22e8de467f9686b467009d397de89b..8948a419cae14906965339c7d97260551c1f709e 100644
--- a/src/nt_composition/__main__.py
+++ b/src/nt_composition/__main__.py
@@ -14,14 +14,14 @@ from .get_projects_interaction import get_interactions_number
 import lazyparser as lp
 
 
-@lp.flag(same_gene=True)
+@lp.flag(same_gene=True, inter_chr=True)
 @lp.parse(weight='weight > 0',
           ft_type=['nt', 'dnt', 'tnt', 'codon', 'aa', 'properties'],
           kind=["density", "distance"])
 def launcher(weight: int = 1, global_weight: int = 0, ft_type: str = 'nt',
              same_gene: bool = False, compute_mean: bool = True,
              iteration: int = 10000, kind: str = 'density',
-             community_size: int = -1,
+             community_size: int = -1, inter_chr: bool = False,
              logging_level: str = "DISABLE"):
     """
     Launch the creation of density file.
@@ -44,21 +44,23 @@ def launcher(weight: int = 1, global_weight: int = 0, ft_type: str = 'nt',
     frequency of the same feature for other co-localized exons. 'distance' \
     to check if the frequencies of co-localized exon are closer than \
     randomly expected. (default : 'density').*
-    :param community_size: consider only exons within communities  bigger
+    :param community_size: consider only exons within communities  bigger \
     than community size. if community_size = -1. This option is deactivated.
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else (default: False)
     :param logging_level: The level of data to display (default 'DISABLE')
     """
-    get_interactions_number(weight, same_gene, logging_level)
+    get_interactions_number(weight, same_gene, inter_chr, logging_level)
     if community_size == -1:
         community_size = None
     if kind == "density":
         create_all_frequency_figures(ConfigNt.cpu, weight, global_weight,
                                      ft_type, same_gene, compute_mean,
-                                     community_size,
+                                     community_size, inter_chr,
                                      logging_level)
     else:
         create_all_distance_figures(ConfigNt.cpu, weight, global_weight,
-                                    ft_type, same_gene, iteration,
+                                    ft_type, same_gene, iteration, inter_chr,
                                     logging_level)
 
 
diff --git a/src/nt_composition/config.py b/src/nt_composition/config.py
index 8dc88e86ae8954ff51d879f6f0bbc039e10c7f61..a7a222d43a53683b4c2e29579ce1644fcc86cdb8 100644
--- a/src/nt_composition/config.py
+++ b/src/nt_composition/config.py
@@ -14,7 +14,7 @@ from ..find_interaction_cluster.config import ConfigGraph
 
 
 def get_weight_folder(weight: int, global_weight: int, ft_type: str,
-                      community_size: Optional[int]):
+                      community_size: Optional[int], inter_chr: bool):
     """
     Get the weight folder.
 
@@ -25,20 +25,23 @@ def get_weight_folder(weight: int, global_weight: int, ft_type: str,
     seen in `global_weight` project are taken into account
     :parma ft_type: The type fo featrue of interst
     :param community_size: The minimum size of communities we want to consider
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return: The folder that will contains the interaction with a weight \
     greater or equal to `weigh` in ChIA-PET projects
     """
+    inter_str = "_inter-chromosmal" if inter_chr else ""
     if community_size is None:
         c = ''
     else:
         c = f'_community_size_gte_{community_size}'
     if global_weight == 0:
         weight_folder = ConfigNt.density_folder / \
-                        f"{ft_type}_project_weight-{weight}{c}"
+                        f"{ft_type}_project_weight-{weight}{c}{inter_str}"
     else:
         weight_folder = ConfigNt.density_folder / \
                         f"{ft_type}_weight-{weight}_" \
-                        f"global_weight-{global_weight}{c}"
+                        f"global_weight-{global_weight}{c}{inter_str}"
     weight_folder.mkdir(parents=True, exist_ok=True)
     return weight_folder
 
@@ -46,7 +49,8 @@ def get_weight_folder(weight: int, global_weight: int, ft_type: str,
 def get_density_file(weight: int, global_weight: int, project: str,
                      ft_type: str, ft: str, fig: bool = False,
                      kind: str = 'density',
-                     community_size: Optional[int] = None):
+                     community_size: Optional[int] = None,
+                     inter_chr: bool = False):
     """
     Get the filename that will contain the density data or figure.
 
@@ -61,6 +65,8 @@ def get_density_file(weight: int, global_weight: int, project: str,
     :param fig: Say if the result file is a figure or not
     :param kind: The kind of the figure
     :param community_size: The minimum size of communities we want to consider
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return: The filename that will contain the density data or figure.
     """
     if fig:
@@ -68,14 +74,15 @@ def get_density_file(weight: int, global_weight: int, project: str,
     else:
         ext = "txt"
     res_folder = get_weight_folder(weight, global_weight, ft_type,
-                                   community_size) / project
+                                   community_size, inter_chr) / project
     res_folder.mkdir(exist_ok=True, parents=True)
     return res_folder / f"{project}_{ft_type}_{ft}_{kind}.{ext}"
 
 
 def get_density_recap(weight: int, global_weight: int,
                       ft_type: str, ft: str, fig: bool = False,
-                      community_size: Optional[int] = False):
+                      community_size: Optional[int] = False,
+                      inter_chr: bool = False):
     """
     Get the density correlation recap file.
 
@@ -88,6 +95,8 @@ def get_density_recap(weight: int, global_weight: int,
     :param ft:  A feature
     :param fig: Say if the result file is a figure or not
     :param community_size: The minimum size of communities we want to consider
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return:
     """
     if fig:
@@ -95,22 +104,29 @@ def get_density_recap(weight: int, global_weight: int,
     else:
         ext = "txt"
     outfolder = get_weight_folder(weight, global_weight, ft_type,
-                                  community_size)
+                                  community_size, inter_chr)
     outfolder.mkdir(exist_ok=True, parents=True)
     return outfolder / f"{ft_type}_{ft}_density_recap.{ext}"
 
 
-def get_interaction_file(weight: int):
+def get_interaction_file(weight: int, same_gene: bool, inter_chr: bool):
     """
     Return the interaction file : coresponding to the file containing \
     iteraction with a weight greater or eaqual to `weight`
 
     :param weight: minimum weight of interaction to \
     concider
+    :param same_gene: Say if we are considering interaction within the same \
+    gene
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return: The interaction filename
     """
+    same_str = "_same_gene_allowed" if same_gene else ""
+    inter_str = "inter-chromosmal_" if inter_chr else ""
     return ConfigNt.interaction / \
-        f"interaction_number_weight>={weight}_by_project.txt"
+        f"{inter_str}interaction_number_weight>={weight}_by_project" \
+        f"{same_str}.txt"
 
 
 def get_features(ft_type: str) -> List[str]:
diff --git a/src/nt_composition/distance.py b/src/nt_composition/distance.py
index 83aa3fcf67bd91f9919d18637affd3cbd8b148b5..5ec3ebdbc1b0695e8f98cfcd80c5a3ed9a9b5e40 100644
--- a/src/nt_composition/distance.py
+++ b/src/nt_composition/distance.py
@@ -254,7 +254,7 @@ def create_distance_figure(df: pd.DataFrame, project: str, figfile: Path,
 
 def create_figures(ft: str, ft_type: str,
                    project: str, weight: int, global_weight: int,
-                   same_gene: bool, iteration: int,
+                   same_gene: bool, iteration: int, inter_chr: bool = False,
                    logging_level: str = "DISABLE"
                    ) -> None:
     """
@@ -271,24 +271,29 @@ def create_figures(ft: str, ft_type: str,
     seen in `global_weight` project are taken into account
     :param same_gene: Say if we consider as co-localised exon within the \
     same gene
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :param logging_level: The level of information to display
     :param iteration: The number of iteration
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
     outfile = ConfigNt.get_density_file(weight, global_weight, project,
                                         ft_type, ft, fig=False,
-                                        kind="distance")
+                                        kind="distance",
+                                        inter_chr=inter_chr)
     if not outfile.is_file():
         cnx = sqlite3.connect(ConfigNt.db_file)
         arr_interaction = get_project_colocalisation(cnx, project, weight,
-                                                     global_weight, same_gene)
+                                                     global_weight, same_gene,
+                                                     inter_chr=inter_chr)
         dic_freq = get_frequency_dic(cnx, ft, ft_type)
         df = create_distance_table(arr_interaction, dic_freq, project,
                                    iteration, ft, ft_type)
         df.to_csv(outfile, sep="\t", index=False)
         figfile = ConfigNt.get_density_file(weight, global_weight, project,
                                             ft_type, ft, fig=True,
-                                            kind="distance")
+                                            kind="distance",
+                                            inter_chr=inter_chr)
         create_distance_figure(df, project, figfile, ft, iteration)
 
 
@@ -296,7 +301,8 @@ def execute_density_figure_function(project: str,
                                     ft_type: str, ft: str, weight: int,
                                     global_weight: int,
                                     same_gene: bool,
-                                    iteration: int) -> None:
+                                    iteration: int,
+                                    inter_chr: bool = False) -> None:
     """
     Execute create_density_figure and organized the results in a dictionary.
 
@@ -312,16 +318,19 @@ def execute_density_figure_function(project: str,
     same gene
     :param iteration: The number of iteration of interest to create \
     the control set.
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     """
     logging.info(f'Working on {project}, {ft_type}, {ft} - {os.getpid()}')
     create_figures(ft, ft_type, project, weight,
-                   global_weight, same_gene, iteration)
+                   global_weight, same_gene, iteration, inter_chr)
 
 
 def create_all_distance_figures(ps: int, weight: int = 1,
                                 global_weight: int = 0, ft_type: str = "nt",
                                 same_gene: bool = True,
                                 iteration: int = 10000,
+                                inter_chr: bool = False,
                                 logging_level: str = "DISABLE"):
     """
     Make density figure for every selected projects.
@@ -336,6 +345,8 @@ def create_all_distance_figures(ps: int, weight: int = 1,
     :param same_gene: Say if we consider as co-localised exon within the \
     same gene
     :param iteration: Number of iteration for control exons
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :param ps: The number of processes to create
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
@@ -349,7 +360,7 @@ def create_all_distance_figures(ps: int, weight: int = 1,
     processes = []
     for project, ft, ft_type in param:
         args = [project, ft_type, ft, weight, global_weight, same_gene,
-                iteration]
+                iteration, inter_chr]
         processes.append(pool.apply_async(execute_density_figure_function,
                                           args))
     for proc in processes:
diff --git a/src/nt_composition/get_projects_interaction.py b/src/nt_composition/get_projects_interaction.py
index f9dbc9dfedfad312bd320f1141fe9669af4535ba..002446d8c3137635b733e587b3d2fa6104d86092 100644
--- a/src/nt_composition/get_projects_interaction.py
+++ b/src/nt_composition/get_projects_interaction.py
@@ -22,7 +22,8 @@ import logging
 
 
 def get_interaction_by_project(cnx: sqlite3.Connection, weight: int,
-                               same_gene: bool) -> pd.DataFrame:
+                               same_gene: bool,
+                               inter_chr: bool = False) -> pd.DataFrame:
     """
     Get the number of interactions by projects.
 
@@ -30,13 +31,18 @@ def get_interaction_by_project(cnx: sqlite3.Connection, weight: int,
     :param weight: A weight threshold
     :param same_gene: Say if we are considering interaction within the same \
     gene
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return: The table containing the number of interaction by projects
     """
     logging.debug('Getting interaction from database')
+    inter_str = " AND level = 'inter'" if inter_chr else ""
+    inter_str_t = " AND t1.level = 'inter'" if inter_chr else ""
     if same_gene:
         query = f"SELECT id_project, COUNT(*) " \
                 f"FROM cin_exon_interaction " \
                 f"WHERE weight >= {weight} " \
+                f"{inter_str} " \
                 f"GROUP BY id_project"
     else:
         query = f"""SELECT id_project, COUNT(*)
@@ -45,6 +51,7 @@ def get_interaction_by_project(cnx: sqlite3.Connection, weight: int,
                     AND t1.exon1 = t2.id
                     AND t1.exon2 = t3.id
                     AND t2.id_gene != t3.id_gene
+                    {inter_str_t}
                     GROUP BY id_project"""
     df = pd.read_sql_query(query, cnx)
     df.columns = ['projects', 'interaction_count']
@@ -53,13 +60,18 @@ def get_interaction_by_project(cnx: sqlite3.Connection, weight: int,
     return df
 
 
-def make_barplot(df: pd.DataFrame, weight: int):
+def make_barplot(df: pd.DataFrame, weight: int,
+                 same_gene: bool, inter_chr: bool):
     """
     Make a barplot displaying the number of interactions for every project.
 
     :param weight: The minimum weight of interaction to concidere them
     :param df: The dataframe containing the number of interaction by \
     projects
+    :param same_gene: Say if we are considering interaction within the same \
+    gene
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     """
     logging.debug("Creating barplot figure")
     ConfigNt.interaction.mkdir(parents=True, exist_ok=True)
@@ -68,7 +80,7 @@ def make_barplot(df: pd.DataFrame, weight: int):
     plt.figure(figsize=(20, 12))
     sns.barplot(x="projects", y="interaction_count", data=df)
     plt.xticks(rotation=90)
-    outfile = ConfigNt.get_interaction_file(weight)
+    outfile = ConfigNt.get_interaction_file(weight, same_gene, inter_chr)
     plt.savefig(outfile.parent / outfile.name.replace('txt', 'pdf'),
                 bbox_inches='tight')
     plt.close()
@@ -91,6 +103,7 @@ def select_projects(df: pd.DataFrame):
 
 
 def get_interactions_number(weight: int = 1, same_gene: bool = False,
+                            inter_chr: bool = False,
                             logging_level: str = "DISABLE"):
     """
     Get the number of interaction by projects
@@ -98,13 +111,15 @@ def get_interactions_number(weight: int = 1, same_gene: bool = False,
     :param weight: The minimum weight of correlation to consider them
     :param same_gene: Say if we are considering interaction within the same \
     gene
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
     logging.info(f'Recovering interaction count with a weight of {weight}')
     cnx = sqlite3.connect(ConfigNt.db_file)
-    df = get_interaction_by_project(cnx, weight, same_gene)
-    make_barplot(df, weight)
-    df.to_csv(ConfigNt.get_interaction_file(weight),
+    df = get_interaction_by_project(cnx, weight, same_gene, inter_chr)
+    make_barplot(df, weight, same_gene, inter_chr)
+    df.to_csv(ConfigNt.get_interaction_file(weight, same_gene, inter_chr),
               sep="\t", index=False)
     sns.barplot()
     select_projects(df)
diff --git a/src/nt_composition/make_nt_correlation.py b/src/nt_composition/make_nt_correlation.py
index ef7ceb8b372371c9b417a52cdf35d3f115b045b0..2c94056cbc7644dbf17fe1ae6c1d66f8b700813b 100644
--- a/src/nt_composition/make_nt_correlation.py
+++ b/src/nt_composition/make_nt_correlation.py
@@ -47,11 +47,11 @@ def get_select_addition(global_weight: int, get_weight: bool, same_gene: bool):
     if get_weight:
         if global_weight == 0 and same_gene:
             return ', weight'
-        elif global_weight == 0 and not same_gene:
+        elif global_weight == 0:
             return ', t1.weight'
         elif global_weight >= 0 and same_gene:
             return ', ROUND(AVG(weight), 2)'
-        elif global_weight >= 0 and not same_gene:
+        elif global_weight >= 0:
             return ', ROUND(AVG(t1.weight), 2)'
     return ''
 
@@ -60,7 +60,8 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str,
                                weight: int,
                                global_weight: int, same_gene: bool,
                                get_weight: bool = False,
-                               exon_bc: Optional[np.array] = None) -> np.array:
+                               exon_bc: Optional[np.array] = None,
+                               inter_chr: bool = False) -> np.array:
     """
     Get the interactions in project `project`
 
@@ -75,13 +76,16 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str,
     :param same_gene: Say if we consider as co-localised exon within the \
     same gene
     :param exon_bc: exons in big communities
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return: The table containing the number of interaction by projects
     """
     logging.debug(f'Recovering interaction ({os.getpid()})')
     select_add = get_select_addition(global_weight, get_weight, same_gene)
+    inter_str = " AND level = 'inter'" if inter_chr else ""
+    inter_str_t = " AND t1.level = 'inter'" if inter_chr else ""
     if exon_bc is None:
-        filter_exons = ''
-        filter_exons_t = filter_exons
+        filter_exons = filter_exons_t = ''
     else:
         tmp = tuple(exon_bc)
         filter_exons = f' AND exon1 IN {tmp} AND exon2 IN {tmp}'
@@ -91,7 +95,9 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str,
             query = f"SELECT exon1, exon2{select_add} " \
                     "FROM cin_exon_interaction " \
                     f"WHERE weight >= {weight} " \
-                    f"AND id_project = '{project}'" + filter_exons
+                    f"AND id_project = '{project}'" \
+                    + filter_exons \
+                    + inter_str
         else:
             query = f"""SELECT t1.exon1, t1.exon2{select_add}
                         FROM cin_exon_interaction t1, cin_exon t2, cin_exon t3
@@ -99,15 +105,18 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str,
                         AND id_project = '{project}' 
                         AND t1.exon1 = t2.id
                         AND t1.exon2 = t3.id
-                        AND t2.id_gene != t3.id_gene""" + filter_exons_t
+                        AND t2.id_gene != t3.id_gene""" \
+                    + filter_exons_t \
+                    + inter_str_t
     else:
         good_projects = tuple(ConfigNt.good_projects)
         if same_gene:
             query = f"SELECT exon1, exon2{select_add} " \
                     f"FROM cin_exon_interaction " \
                     f"WHERE weight >= {weight} " \
-                    f"AND id_project IN {good_projects}" \
-                    f"{filter_exons}" \
+                    f"AND id_project IN {good_projects} " \
+                    f"{filter_exons} " \
+                    f"{inter_str} " \
                     f"GROUP BY exon1, exon2 " \
                     f"HAVING COUNT(*) >= {global_weight}"
         else:
@@ -119,6 +128,7 @@ def get_project_colocalisation(cnx: sqlite3.Connection, project: str,
                         AND t2.id_gene != t3.id_gene
                         AND t1.id_project IN {good_projects}
                         {filter_exons_t}
+                        {inter_str_t}
                         GROUP BY exon1, exon2
                         HAVING COUNT(*) >= {global_weight}"""
 
@@ -258,7 +268,8 @@ def create_density_table(arr_interaction: np.array, dic_freq: Dict[str, float],
 
 def create_density_fig(df: pd.DataFrame, project: str, ft_type: str, ft: str,
                        weight: int, global_weight: int,
-                       community_size: Optional[int]) -> Tuple[float, float]:
+                       community_size: Optional[int],
+                       inter_chr: bool) -> Tuple[float, float]:
     """
     Compute a density file showing if the feature frequency of \
     an exons correlates with the frequency in other co-localised exons.
@@ -274,6 +285,8 @@ def create_density_fig(df: pd.DataFrame, project: str, ft_type: str, ft: str,
     the global weight is equal to 0 then then density figure are calculated \
     by project, else all projet are merge together and the interaction \
     seen in `global_weight` project are taken into account
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return: The correlation and the p-value
     """
     logging.debug('Creating the density figure')
@@ -290,11 +303,15 @@ def create_density_fig(df: pd.DataFrame, project: str, ft_type: str, ft: str,
     plt.legend()
     plt.xlabel(f"Freq of {ft} in an exon")
     plt.ylabel(f"Freq of {ft} in co-localized exons")
-    plt.title(f'Freq of {ft} of exons and their co-localized partner in '
-              f'{project}')
+    title = f'Freq of {ft} of exons and their co-localized partner in ' \
+              f'{project}'
+    if inter_chr:
+        title += '\n(inter chromosomal interactions)'
+    plt.title(title)
     plt.savefig(ConfigNt.get_density_file(weight, global_weight, project,
                                           ft_type, ft, fig=True,
-                                          community_size=community_size))
+                                          community_size=community_size,
+                                          inter_chr=inter_chr))
     plt.close()
     return r, p
 
@@ -303,6 +320,7 @@ def create_density_figure(nt: str, ft_type: str,
                           project: str, weight: int, global_weight: int,
                           same_gene: bool, compute_mean: bool,
                           community_size: Optional[int],
+                          inter_chr: bool = False,
                           logging_level: str = "DISABLE"
                           ) -> Tuple[float, float]:
     """
@@ -323,13 +341,16 @@ def create_density_figure(nt: str, ft_type: str,
     exons, false to only compute the frequency of one co-localized exons.
     :param community_size: The size of the community to consider in the \
     analysis.
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :param logging_level: The level of information to display
     :return: The correlation and the p-value
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
     outfile = ConfigNt.get_density_file(weight, global_weight, project,
                                         ft_type, nt, fig=False,
-                                        community_size=community_size)
+                                        community_size=community_size,
+                                        inter_chr=inter_chr)
     if not outfile.is_file():
         exons_bc = recover_exon_in_big_communities(community_size, project,
                                                    weight,
@@ -337,12 +358,13 @@ def create_density_figure(nt: str, ft_type: str,
         cnx = sqlite3.connect(ConfigNt.db_file)
         arr_interaction = get_project_colocalisation(cnx, project, weight,
                                                      global_weight, same_gene,
-                                                     False, exons_bc)
+                                                     False, exons_bc,
+                                                     inter_chr)
         dic_freq = get_frequency_dic(cnx, nt, ft_type)
         df = create_density_table(arr_interaction, dic_freq, compute_mean)
         df.to_csv(outfile, sep="\t", index=False)
         r, p = create_density_fig(df, project, ft_type, nt, weight,
-                                  global_weight, community_size)
+                                  global_weight, community_size, inter_chr)
     else:
         logging.debug(f'The file {outfile} exist, recovering data '
                       f'({os.getpid()})')
@@ -353,7 +375,8 @@ def create_density_figure(nt: str, ft_type: str,
 
 def create_scatterplot(df_cor: pd.DataFrame, ft_type: str, ft: str,
                        weight: int, global_weight: int,
-                       community_size: Optional[int]):
+                       community_size: Optional[int],
+                       inter_chr: bool):
     """
     Create a scatterplot showing the R-value according to the  \
     number of interaction.
@@ -366,6 +389,8 @@ def create_scatterplot(df_cor: pd.DataFrame, ft_type: str, ft: str,
     the global weight is equal to 0 then then density figure are calculated \
     by project, else all projet are merge together and the interaction \
     seen in `global_weight` project are taken into account
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     """
     sns.set()
     sns.set_context('talk')
@@ -381,11 +406,15 @@ def create_scatterplot(df_cor: pd.DataFrame, ft_type: str, ft: str,
                  df_cor.project.values[i], fontsize=8)
     plt.xlabel(f"Correlation for {ft} ({ft_type}) in project")
     plt.ylabel("Number of total interaction in projects")
-    plt.title(f'Project correlation for {ft} ({ft_type}) '
-              f'according to the number of interaction in projects')
+    title = f'Project correlation for {ft} ({ft_type}) ' \
+            f'according to the number of interaction in projects'
+    if inter_chr:
+        title += "\n(inter-chromosmal interactions)"
+    plt.title(title)
     plt.savefig(ConfigNt.get_density_recap(weight, global_weight, ft_type,
                                            ft, fig=True,
-                                           community_size=community_size))
+                                           community_size=community_size,
+                                           inter_chr=inter_chr))
     plt.close()
 
 
@@ -394,7 +423,9 @@ def execute_density_figure_function(di: pd.DataFrame, project : str,
                                     global_weight: int,
                                     same_gene: bool,
                                     compute_mean: bool,
-                                    community_size: Optional[int]) -> Dict[str, Any]:
+                                    community_size: Optional[int],
+                                    inter_chr: bool = False
+                                    ) -> Dict[str, Any]:
     """
     Execute create_density_figure and organized the results in a dictionary.
 
@@ -413,12 +444,14 @@ def execute_density_figure_function(di: pd.DataFrame, project : str,
     exons, false to only compute the frequency of one co-localized exons.
     :param community_size: he size of the community to consider in the \
     analysis.
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     :return:
     """
     logging.info(f'Working on {project}, {ft_type}, {ft} - {os.getpid()}')
     r, p = create_density_figure(ft, ft_type, project, weight,
                                  global_weight, same_gene, compute_mean,
-                                 community_size)
+                                 community_size, inter_chr)
     if global_weight == 0:
         tmp = {"project": project, "ft_type": ft_type,
                "ft": ft, "cor": r, "pval": p,
@@ -482,6 +515,7 @@ def create_all_frequency_figures(ps: int, weight: int = 1,
                                  global_weight: int = 0, ft_type: str = "nt",
                                  same_gene = True, compute_mean: bool = True,
                                  community_size: Optional[int] = None,
+                                 inter_chr: bool = False,
                                  logging_level: str = "DISABLE"):
     """
     Make density figure for every selected projects.
@@ -500,10 +534,13 @@ def create_all_frequency_figures(ps: int, weight: int = 1,
     :param community_size: The size of the community to consider in the \
     analysis.
     :param ps: The number of processes to create
+    :param inter_chr: True to only get inter-chromosomal interactions \
+    False else
     """
     logging_def(ConfigNt.interaction, __file__, logging_level)
     if global_weight == 0:
-        di = pd.read_csv(ConfigNt.get_interaction_file(weight), sep="\t")
+        di = pd.read_csv(ConfigNt.get_interaction_file(weight, same_gene,
+                                                       inter_chr), sep="\t")
         projects = ConfigNt.good_projects
     else:
         di = pd.DataFrame()
@@ -514,22 +551,21 @@ def create_all_frequency_figures(ps: int, weight: int = 1,
     processes = []
     for project, ft, ft_type in param:
         args = [di, project, ft_type, ft, weight, global_weight, same_gene,
-                compute_mean, community_size]
+                compute_mean, community_size, inter_chr]
         processes.append(pool.apply_async(execute_density_figure_function,
                                           args))
-    results = []
-    for proc in processes:
-        results.append(proc.get(timeout=None))
+    results = [proc.get(timeout=None) for proc in processes]
     dic = combine_dic(results)
     df_corr = pd.DataFrame(dic)
     df_corr.to_csv(ConfigNt.get_density_recap(weight, global_weight, ft_type,
                                               'ALL', fig=False,
-                                              community_size=community_size),
+                                              community_size=community_size,
+                                              inter_chr=inter_chr),
                    sep="\t")
     if global_weight == 0:
         for ft in ft_list:
             create_scatterplot(df_corr, ft_type, ft, weight, global_weight,
-                               community_size)
+                               community_size, inter_chr)
 
 
 if __name__ == "__main__":