diff --git a/src/find_interaction_cluster/nt_and_community.py b/src/find_interaction_cluster/nt_and_community.py
index 45babcb9e6f4a6a01711a99d97e901d185dc23ac..f9ffb266414456024560e4a55d5a78abb4d25016 100644
--- a/src/find_interaction_cluster/nt_and_community.py
+++ b/src/find_interaction_cluster/nt_and_community.py
@@ -117,15 +117,15 @@ def get_community_table(communities: List[List[str]],
     return pd.DataFrame(dic)
 
 
-def lmm_maker(df: pd.DataFrame, outfile: Path, nt: str) -> float:
+def lm_maker(df: pd.DataFrame, outfile: Path, nt: str) -> float:
     """
-    Make the lmm analysis to see if the exon regulated by a splicing factor \
+    Make the lm analysis to see if the exon regulated by a splicing factor \
     are equally distributed among the communities.
 
     :param df: The dataframe
     :param outfile: A name of a file
     :param nt: the nucleotide of interest
-    :return: the pvalue of lmm
+    :return: the pvalue of lm
 
     """
     pandas2ri.activate()
@@ -143,7 +143,6 @@ def lmm_maker(df: pd.DataFrame, outfile: Path, nt: str) -> float:
             dev.off()
             return(anova(mod, null_mod, test="Chisq"))
         }
-
         """ % (nt, nt))
     folder = outfile.parent / "diagnostics"
     folder.mkdir(parents=True, exist_ok=True)
@@ -152,19 +151,19 @@ def lmm_maker(df: pd.DataFrame, outfile: Path, nt: str) -> float:
     return res["Pr(>Chisq)"][1]
 
 
-def lmm_maker_summary(df: pd.DataFrame, outfile: Path, cpnt: str
-                      ) -> pd.DataFrame:
+def lm_maker_summary(df: pd.DataFrame, outfile: Path, cpnt: str
+                     ) -> pd.DataFrame:
     """
-    Make the lmm analysis to see if the exon regulated by a splicing factor \
+    Make the lm analysis to see if the exon regulated by a splicing factor \
     are equally distributed among the communities.
 
     :param df: The dataframe
     :param outfile: A name of a file
     :param cpnt: The component (nt, aa, dnt) of interest
-    :return: the pvalue of lmm
+    :return: the pvalue of lm
     """
     pandas2ri.activate()
-    lmm = r(
+    lmf = r(
         """
         require("DHARMa")
 
@@ -181,7 +180,8 @@ def lmm_maker_summary(df: pd.DataFrame, outfile: Path, cpnt: str
     folder = outfile.parent / "diagnostics"
     folder.mkdir(parents=True, exist_ok=True)
     partial_name = outfile.name.replace('.txt', '')
-    res_df = lmm(df, str(folder), partial_name).reset_index()
+    df.to_csv(f'frequency_{cpnt}.txt', sep="\t", index=False)
+    res_df = lmf(df, str(folder), partial_name).reset_index()
     res_df.rename({'index': 'community'}, inplace=True, axis=1)
     res_df['community'] = res_df['community'].str.replace('community', '')
     res_df.loc[res_df['community'] == "(Intercept)", "community"] = "C-CTRL"
@@ -232,9 +232,9 @@ def create_ctrl_community(df: pd.DataFrame,
     return df
 
 
-def lmm_with_ctrl(df: pd.DataFrame, feature: str, region: str,
-                  cpnt: str, outfile_diag: Path, cpnt_type: str
-                  ) -> Tuple[pd.DataFrame, pd.DataFrame]:
+def lm_with_ctrl(df: pd.DataFrame, feature: str, region: str,
+                 cpnt: str, outfile_diag: Path, cpnt_type: str
+                 ) -> Tuple[pd.DataFrame, pd.DataFrame]:
     """
 
     :param df: df: A dataframe containing the frequency of each nucleotide \
@@ -251,7 +251,7 @@ def lmm_with_ctrl(df: pd.DataFrame, feature: str, region: str,
     list of feature.
     """
     ndf = create_ctrl_community(df, feature, region, cpnt_type)
-    return ndf, lmm_maker_summary(ndf, outfile_diag, cpnt)
+    return ndf, lm_maker_summary(ndf, outfile_diag, cpnt)
 
 
 def get_feature_by_community(df: pd.DataFrame, feature: str) -> Dict:
@@ -397,7 +397,7 @@ def prepare_dataframe(df: pd.DataFrame, test_type: str, nt: str,
     produce the database
     :return: The dataframe ready for barplot visualisation
     """
-    if test_type == "lmm":
+    if test_type == "lm":
         # removing the size parameter
         df = df[df["community"] != "log(_size)"].copy()
         df.rename({"Pr(>|t|)": "p-adj"}, axis=1, inplace=True)
@@ -433,7 +433,7 @@ def make_barplot(df_bar: pd.DataFrame, outfile: Path, cpnt_type: str,
     :param feature: The king of feature of interest
     """
     sns.set()
-    test_name = "permutation" if test_type == "perm" else "lmm"
+    test_name = "permutation" if test_type == "perm" else "lm"
     g = sns.catplot(x="community", y=cpnt, data=df_bar, kind="bar",
                     ci="sd", aspect=2.5, height=12, errwidth=0.5, capsize=.4,
                     palette=["red"] + ["lightgray"] * (df_bar.shape[0] - 1))
@@ -454,8 +454,8 @@ def make_barplot(df_bar: pd.DataFrame, outfile: Path, cpnt_type: str,
     g.savefig(outfile)
 
 
-def expand_results_lmm(df: pd.DataFrame, rdf: pd.DataFrame,
-                       cpnt: str, feature: str) -> pd.DataFrame:
+def expand_results_lm(df: pd.DataFrame, rdf: pd.DataFrame,
+                      cpnt: str, feature: str) -> pd.DataFrame:
     """
     Merge df and rdf together.
 
@@ -528,18 +528,18 @@ def create_and_save_ctrl_dataframe(df: pd.DataFrame, feature: str,
     :param cpnt: The component (nt, aa, dnt) of interest
     :param outfile_ctrl: file used to stored the table and the figure \
     containing the test communities and the control community
-    :param test_type: The type of test to make (permutation or lmm)
+    :param test_type: The type of test to make (permutation or lm)
     :param df_ctrl: A dataframe containing the frequency of each nucleotide \
     in each exons/gene in fasterdb.
     :param dic_com: A dictionary linking each community to the exons \
     it contains.
     :param iteration: The number of sub samples to create
     """
-    if test_type == "lmm":
-        ndf, rdf = lmm_with_ctrl(df, feature, region, cpnt,
-                                 outfile_ctrl.parents[1] / outfile_ctrl.name,
-                                 cpnt_type)
-        df_bar = expand_results_lmm(ndf, rdf, cpnt, feature)
+    if test_type == "lm":
+        ndf, rdf = lm_with_ctrl(df, feature, region, cpnt,
+                                outfile_ctrl.parents[1] / outfile_ctrl.name,
+                                cpnt_type)
+        df_bar = expand_results_lm(ndf, rdf, cpnt, feature)
     else:
         rdf = perm_with_ctrl(df, feature, cpnt, df_ctrl, dic_com, iteration)
         df_bar = expand_results_perm(df, rdf, cpnt, feature, iteration)
@@ -589,7 +589,7 @@ def create_outfiles(project: str, weight: int, global_weight: int,
     can be 'nt', 'dnt' or 'aa'.
     :param cpnt: The component (nt, aa, dnt) of interest
     :param feature: The kind of feature analysed
-    :param test_type: The type of test to make (permutation or lmm)
+    :param test_type: The type of test to make (permutation or lm)
     :return: file used to store diagnostics and a file used to store the \
     table containing the test communities and the control community
     """
@@ -635,7 +635,7 @@ def get_stat_cpnt_communities(df: pd.DataFrame, project: str, weight: int,
     it contains.
     :param feature: The kind of feature analysed
     :param region: the region of interest to extract from gene
-    :param test_type: The type of test to make (permutation or lmm)
+    :param test_type: The type of test to make (permutation or lm)
     :param iteration: The number of sub samples to create
     """
     logging.debug(f"{test_type} for {project}, w:{weight}, "
@@ -644,7 +644,7 @@ def get_stat_cpnt_communities(df: pd.DataFrame, project: str, weight: int,
                                             same_gene, feature, cpnt_type,
                                             cpnt, test_type)
     res = {"project": project, "cpnt": cpnt,
-           'pval': lmm_maker(df, outfile, cpnt)}
+           'pval': lm_maker(df, outfile, cpnt)}
     create_and_save_ctrl_dataframe(df, feature, region, cpnt_type,
                                    cpnt, outfile_ctrl, test_type, df_ctrl,
                                    dic_com, iteration)
@@ -708,13 +708,13 @@ def create_dataframes(project, weight, global_weight, same_gene, feature,
     same gene
     :param feature: The kind of analysed feature
     :param region: the region of interest to extract from gene
-    :param test_type: The type of test to make (permutation or lmm)
+    :param test_type: The type of test to make (permutation or lm)
     :param component_type: The type of component to analyse; It \
     can be 'nt', 'dnt' or 'aa'.
     """
     df = create_dataframe(project, weight, global_weight, same_gene,
                           feature, region, component_type)
-    if test_type == 'lmm':
+    if test_type == 'lm':
         df_ctrl = pd.DataFrame()
         dic_com = {}
     else:
@@ -725,17 +725,17 @@ def create_dataframes(project, weight, global_weight, same_gene, feature,
     return df, df_ctrl, dic_com
 
 
-def multiple_nt_lmm_launcher(ps: int,
-                             weight: int,
-                             global_weight: int,
-                             project: str,
-                             same_gene: bool,
-                             feature: str = 'exon',
-                             region: str = '',
-                             component_type: str = "nt",
-                             test_type: str = "lmm",
-                             iteration: int = 1000,
-                             logging_level: str = "DISABLE"):
+def multiple_nt_lm_launcher(ps: int,
+                            weight: int,
+                            global_weight: int,
+                            project: str,
+                            same_gene: bool,
+                            feature: str = 'exon',
+                            region: str = '',
+                            component_type: str = "nt",
+                            test_type: str = "lm",
+                            iteration: int = 1000,
+                            logging_level: str = "DISABLE"):
     """
     Launch the statistical analysis for every